Suppr超能文献

微流控中混合电动动力学驱动的连续流动纳米颗粒捕获。

Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics.

机构信息

School of Electronics and Control Engineering, Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an, 710064, P. R. China.

School of Mechatronics Engineering, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, 150001, P. R. China.

出版信息

Electrophoresis. 2021 Apr;42(7-8):939-949. doi: 10.1002/elps.202000110. Epub 2020 Aug 7.

Abstract

We introduce herein an efficient microfluidic approach for continuous transport and localized collection of nanoparticles via hybrid electrokinetics, which delicately combines linear and nonlinear electrokinetics driven by a composite DC-biased AC voltage signal. The proposed technique utilizes a simple geometrical structure, in which one or a series of metal strips serving as floating electrode (FE) are attached to the substrate surface and arranged in parallel between a pair of coplanar driving electrodes (DE) in a straight microchannel. On application of a DC-biased AC electric field across the channel, nanoparticles can be transported continuously by DC bulk electroosmotic flow, and then trapped selectively onto the metal strips due to AC-field induced-charge electrokinetic (ICEK) phenomenon, which behaves as counter-rotating micro-vortices around the ideally polarizable surfaces of FE. Finite-element simulation is carried out by coupling the dual-frequency electric field, flow field and sample mass transfer in sequence, for guiding a practical design of the microfluidic nanoparticle concentrator. With the optimal device geometry, the actual performance of the technique is investigated with respect to DC bias, AC voltage amplitude, and field frequency by using both latex nanospheres (∼500 nm) and BSA molecules (∼10 nm). Our experimental observation indicates nanoparticles are always enriched into a narrow bright band on the surface of each FE, and a horizontal concentration gradient even emerges in the presence of multiple metal strips, which therefore permits localized analyte enrichment. The proposed trapping method is supposed to guide an elaborate design of flexible electrokinetic frameworks embedding FE for continuous-flow analyte manipulation in modern microfluidic systems.

摘要

我们在此介绍了一种通过混合电动动力学高效传输和局部收集纳米粒子的微流控方法,该方法巧妙地结合了由复合直流偏置交流电压信号驱动的线性和非线性电动动力学。所提出的技术利用了一种简单的几何结构,其中一个或一系列金属条作为浮置电极 (FE) 附着在基底表面上,并在直微通道中的一对共面驱动电极 (DE) 之间平行排列。在通道上施加直流偏置交流电场时,纳米粒子可以通过直流体电渗流连续传输,然后由于交流场感应电荷电动动力学 (ICEK) 现象选择性地捕获到金属条上,该现象表现为围绕 FE 的理想可极化表面的反向旋转微涡。通过顺序耦合双频电场、流场和样品传质来进行有限元模拟,以指导微流控纳米粒子浓缩器的实际设计。通过使用乳胶纳米球(约 500nm)和 BSA 分子(约 10nm),针对直流偏置、交流电压幅度和场频率,使用优化的器件几何形状,研究了该技术的实际性能。我们的实验观察表明,纳米粒子总是富集在每个 FE 的表面上的一个狭窄亮带中,即使存在多个金属条,也会出现水平浓度梯度,因此允许局部分析物富集。所提出的捕获方法应该可以指导灵活的电动动力学框架的精心设计,该框架嵌入有 FE,用于现代微流控系统中的连续流动分析物操作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验