Suppr超能文献

用于眼部质子治疗中自动瞳孔和虹膜检测的卷积神经网络级联

Convolutional Neural Networks Cascade for Automatic Pupil and Iris Detection in Ocular Proton Therapy.

作者信息

Antonioli Luca, Pella Andrea, Ricotti Rosalinda, Rossi Matteo, Fiore Maria Rosaria, Belotti Gabriele, Magro Giuseppe, Paganelli Chiara, Orlandi Ester, Ciocca Mario, Baroni Guido

机构信息

Bioengineering Unit, Clinical Department, National Center for Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy.

Department of Electronics, Information and Bioengineering, Politecnico di Milano University, 20133 Milan, Italy.

出版信息

Sensors (Basel). 2021 Jun 27;21(13):4400. doi: 10.3390/s21134400.

Abstract

Eye tracking techniques based on deep learning are rapidly spreading in a wide variety of application fields. With this study, we want to exploit the potentiality of eye tracking techniques in ocular proton therapy (OPT) applications. We implemented a fully automatic approach based on two-stage convolutional neural networks (CNNs): the first stage roughly identifies the eye position and the second one performs a fine iris and pupil detection. We selected 707 video frames recorded during clinical operations during OPT treatments performed at our institute. 650 frames were used for training and 57 for a blind test. The estimations of iris and pupil were evaluated against the manual labelled contours delineated by a clinical operator. For iris and pupil predictions, Dice coefficient (median = 0.94 and 0.97), Szymkiewicz-Simpson coefficient (median = 0.97 and 0.98), Intersection over Union coefficient (median = 0.88 and 0.94) and Hausdorff distance (median = 11.6 and 5.0 (pixels)) were quantified. Iris and pupil regions were found to be comparable to the manually labelled ground truths. Our proposed framework could provide an automatic approach to quantitatively evaluating pupil and iris misalignments, and it could be used as an additional support tool for clinical activity, without impacting in any way with the consolidated routine.

摘要

基于深度学习的眼动追踪技术正在广泛的应用领域迅速普及。通过本研究,我们希望挖掘眼动追踪技术在眼部质子治疗(OPT)应用中的潜力。我们基于两阶段卷积神经网络(CNN)实现了一种全自动方法:第一阶段大致识别眼睛位置,第二阶段进行精细的虹膜和瞳孔检测。我们选择了在我们研究所进行的OPT治疗临床操作过程中记录的707个视频帧。650个帧用于训练,57个用于盲测。将虹膜和瞳孔的估计值与临床操作员手动绘制的标记轮廓进行比较评估。对于虹膜和瞳孔预测,量化了骰子系数(中位数 = 0.94和0.97)、辛姆凯维茨 - 辛普森系数(中位数 = 0.97和0.98)、交并比系数(中位数 = 0.88和0.94)和豪斯多夫距离(中位数 = 11.6和5.0(像素))。发现虹膜和瞳孔区域与手动标记的地面真值具有可比性。我们提出的框架可以提供一种自动方法来定量评估瞳孔和虹膜的错位,并且可以用作临床活动的额外支持工具,而不会以任何方式影响现有的常规操作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fda3/8271684/3c8dda6ba8d5/sensors-21-04400-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验