Laboratory for Experimental Orthopedics, Department of Orthopaedic Surgery, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands.
Institute of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany..
Int J Mol Sci. 2019 Feb 13;20(4):795. doi: 10.3390/ijms20040795.
During standard expansion culture (i.e., plasma osmolarity, 280 mOsm) human articular chondrocytes dedifferentiate, making them inappropriate for autologous chondrocyte implantation to treat cartilage defects. Increasing the osmolarity of culture media to physiological osmolarity levels of cartilage (i.e., 380 mOsm), increases collagen type II () expression of human articular chondrocytes , but the underlying molecular mechanism is not fully understood. We hypothesized that TGF-β superfamily signaling may drive expression of under physiological osmolarity culture conditions. Human articular chondrocytes were cultured in cytokine-free medium of 280 or 380 mOsm with or without siRNA mediated TGF-β2 knockdown (RNAi). Expression of TGF-β isoforms, and collagen type II was evaluated by RT-qPCR and immunoblotting. TGF-β2 protein secretion was evaluated using ELISA and TGF-β bioactivity was determined using an established reporter assay. Involvement of BMP signaling was investigated by culturing human articular chondrocytes in the presence or absence of BMP inhibitor dorsomorphin and BMP bioactivity was determined using an established reporter assay. Physiological cartilage osmolarity (i.e., physosmolarity) most prominently increased TGF-β2 mRNA expression and protein secretion as well as TGF-β bioactivity. Upon TGF-β2 isoform-specific knockdown, gene expression of chondrocyte marker was induced. TGF-β2 RNAi under physosmolarity enhanced TGF-β bioactivity. BMP bioactivity increased upon physosmotic treatment, but was not related to TGF-β2 RNAi. In contrast, dorsomorphin inhibited mRNA expression in human articular chondrocytes independent of the osmotic condition. Our data suggest a role for TGF-β superfamily member signaling in physosmolarity-induced mRNA expression of collagen type II. As physosmotic conditions favor the expression of independent of our manipulations, contribution of other metabolic, post-transcriptional or epigenetic factors cannot be excluded in the underlying complex and interdependent regulation of marker gene expression. Dissecting these molecular mechanisms holds potential to further improve future cell-based chondral repair strategies.
在标准扩张培养(即血浆渗透压,280mOsm)中,人关节软骨细胞去分化,使其不适合用于自体软骨细胞植入治疗软骨缺损。增加培养基的渗透压至软骨的生理渗透压水平(即 380mOsm),可增加人关节软骨细胞中 II 型胶原()的表达,但其中的分子机制尚不完全清楚。我们假设 TGF-β 超家族信号可能驱动生理渗透压培养条件下的表达。将人关节软骨细胞在 280 或 380mOsm 的无细胞因子培养基中培养,有或无 TGF-β2 小干扰 RNA 介导的敲低(RNAi)。通过 RT-qPCR 和免疫印迹评估 TGF-β 同工型和 II 型胶原的表达。通过 ELISA 评估 TGF-β2 蛋白分泌,通过建立的报告基因测定评估 TGF-β 生物活性。通过在存在或不存在 BMP 抑制剂多西环素的情况下培养人关节软骨细胞,研究 BMP 信号转导的参与情况,并通过建立的报告基因测定评估 BMP 生物活性。生理软骨渗透压(即 physosmolarity)最显著地增加了 TGF-β2 mRNA 表达和蛋白分泌以及 TGF-β 生物活性。在 TGF-β2 同工型特异性敲低后,软骨细胞标志物的基因表达被诱导。physosmolarity 下的 TGF-β2 RNAi 增强了 TGF-β 生物活性。physosmotic 处理后 BMP 生物活性增加,但与 TGF-β2 RNAi 无关。相反,多西环素独立于渗透压条件抑制人关节软骨细胞中的 mRNA 表达。我们的数据表明 TGF-β 超家族成员信号在 physosmolarity 诱导的 II 型胶原 mRNA 表达中起作用。由于 physosmotic 条件有利于我们的操作之外的表达,因此在标记基因表达的潜在复杂和相互依赖的调节中,不能排除其他代谢、转录后或表观遗传因素的贡献。剖析这些分子机制有可能进一步改进未来基于细胞的软骨修复策略。