Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
Department of Orthopaedic Surgery, Maastricht University Medical Centre+, 6229 HXMaastricht, The Netherlands.
Int J Mol Sci. 2019 Apr 6;20(7):1715. doi: 10.3390/ijms20071715.
Culturing articular chondrocytes under physiological oxygen tension exerts positive effects on their extracellular matrix synthesis. The underlying molecular mechanisms which enhance the chondrocytic phenotype are, however, still insufficiently elucidated. The TGF-β superfamily of growth factors, and the prototypic TGF-β isoforms in particular, are crucial in maintaining matrix homeostasis of these cells. We employed a feedback-controlled table-top bioreactor to investigate the role of TGF-β in microtissues of human chondrocytes over a wider range of physiological oxygen tensions (i.e., physoxia). We compared 1%, 2.5%, and 5% of partial oxygen pressure (pO₂) to the 'normoxic' 20%. We confirmed physoxic conditions through the induction of marker genes (, ) and oxygen tension-dependent chondrocytic markers (, ). We identified 2.5% pO₂ as an oxygen tension optimally improving chondrocytic marker expression (, ), while suppressing de-differentiation markers ( ). Expression of TGF-β isoform 2 () was, relatively, most responsive to 2.5% pO₂, while all three isoforms were induced by physoxia. We found TGF-β receptors and to be regulated by oxygen tension on the mRNA and protein level. In addition, expression of type III co-receptors betaglycan and endoglin appeared to be regulated by oxygen tension as well. R-Smad signaling confirmed that physoxia divergently regulated phosphorylation of Smad1/5/8 and Smad2/3. Pharmacological inhibition of canonical ALK5-mediated signaling abrogated physoxia-induced and expression. Physoxia altered expression of hypertrophy markers and that of matrix metalloproteases and their activity, as well as expression ratios of specific proteins (Sp)/Krüppel-like transcription factor family members SP1 and SP3, proving a molecular concept of ECM marker regulation. Keeping oxygen levels tightly balanced within a physiological range is important for optimal chondrocytic marker expression. Our study provides novel insights into transcriptional regulations in chondrocytes under physoxic conditions and may contribute to improving future cell-based articular cartilage repair strategies.
在生理氧张力下培养关节软骨细胞对其细胞外基质合成有积极影响。然而,增强软骨细胞表型的潜在分子机制仍未得到充分阐明。TGF-β 超家族的生长因子,特别是原型 TGF-β 同工型,对于维持这些细胞的基质稳态至关重要。我们使用反馈控制台式生物反应器在更广泛的生理氧张力(即低氧)范围内研究 TGF-β 在人软骨细胞微组织中的作用。我们将 1%、2.5%和 5%的部分氧分压(pO₂)与“常氧”20%进行了比较。我们通过诱导标记基因(COL2A1 和 SOX9)和氧依赖性软骨细胞标记物(ACAN 和 COL10A1)来证实低氧条件。我们发现 2.5%的 pO₂是一种最佳改善软骨细胞标记物表达(COL2A1、SOX9、ACAN 和 COL10A1)的氧张力,同时抑制去分化标记物(MMP13 和 MMP14)。TGF-β 同工型 2()的表达相对对 2.5%的 pO₂最敏感,而所有三种同工型都被低氧诱导。我们发现 TGF-β 受体 和 在 mRNA 和蛋白质水平上受氧张力调节。此外,III 型共受体 betaglycan 和 endoglin 的表达似乎也受到氧张力的调节。R-Smad 信号证实,低氧对 Smad1/5/8 和 Smad2/3 的磷酸化有不同的调节作用。ALK5 介导的信号通路的药理学抑制消除了低氧诱导的 COL2A1 和 SOX9 的表达。低氧改变了肥大标记物的表达以及基质金属蛋白酶及其活性,以及特定蛋白(Sp)/Krüppel 样转录因子家族成员 SP1 和 SP3 的表达比例,证明了 ECM 标记物调节的分子概念。保持氧水平在生理范围内紧密平衡对于最佳软骨细胞标记物表达很重要。我们的研究为低氧条件下软骨细胞的转录调控提供了新的见解,并可能有助于改进未来基于细胞的关节软骨修复策略。