Suppr超能文献

利用遗传负担评分进行非裔美国人代谢综合征的基因-甲基化相互作用分析。

Using Genetic Burden Scores for Gene-by-Methylation Interaction Analysis on Metabolic Syndrome in African Americans.

作者信息

Taylor Jacquelyn Y, Ware Erin B, Wright Michelle L, Smith Jennifer A, Kardia Sharon L R

机构信息

1 New York University, New York, NY, USA.

2 Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.

出版信息

Biol Res Nurs. 2019 May;21(3):279-285. doi: 10.1177/1099800419828486. Epub 2019 Feb 19.

Abstract

With the rapid advancement of omics-based research, particularly big data such as genome- and epigenome-wide association studies that include extensive environmental and clinical variables, data analytics have become increasingly complex. Researchers face significant challenges regarding how to analyze multifactorial data and make use of the findings for clinical translation. The purpose of this article is to provide a scientific exemplar for use of genetic burden scores as a data analysis method for studies with both genotype and DNA methylation data in which the goal is to evaluate associations with chronic conditions such as metabolic syndrome (MetS). This study included 739 African American men and women from the Genetic Epidemiology Network of Arteriopathy Study who met diagnostic criteria for MetS and had available genetic and epigenetic data. Genetic burden scores for evaluated genes were not significant after multiple testing corrections, but DNA methylation at 2 CpG sites (dihydroorotate dehydrogenase cg22381196 pFDR = .014; CTNNA3 cg00132141 pFDR = .043) was significantly associated with MetS after controlling for multiple comparisons. Interactions between the marginally significant CpG sites and burden scores, however, were not significant. More work is required in this area to identify intermediate biological pathways influenced by environmental, genetic, and epigenetic variation that may explain the high prevalence of MetS among African Americans. This study does serve, however, as an example of the use of the genetic burden score as an alternative data analysis approach for complex studies involving the analysis of genetic and epigenetic data simultaneously.

摘要

随着基于组学的研究迅速发展,特别是诸如包含广泛环境和临床变量的全基因组和表观基因组关联研究等大数据,数据分析变得越来越复杂。研究人员在如何分析多因素数据以及如何将研究结果用于临床转化方面面临重大挑战。本文的目的是提供一个科学范例,说明如何使用遗传负担评分作为一种数据分析方法,用于同时包含基因型和DNA甲基化数据的研究,其目标是评估与代谢综合征(MetS)等慢性病的关联。本研究纳入了动脉病遗传流行病学网络研究中的739名非裔美国男性和女性,他们符合MetS的诊断标准且有可用的遗传和表观遗传数据。经过多重检验校正后,评估基因的遗传负担评分不显著,但在控制多重比较后,2个CpG位点(二氢乳清酸脱氢酶cg22381196,pFDR = 0.014;CTNNA3 cg00132141,pFDR = 0.043)的DNA甲基化与MetS显著相关。然而,边缘显著的CpG位点与负担评分之间的相互作用并不显著。该领域需要开展更多工作,以确定受环境、遗传和表观遗传变异影响的中间生物学途径,这些途径可能解释非裔美国人中MetS的高患病率。不过,本研究确实为使用遗传负担评分作为一种替代数据分析方法提供了一个范例,该方法适用于同时涉及遗传和表观遗传数据分析的复杂研究。

相似文献

引用本文的文献

1
Ten Years of EWAS.十年的 EWAS 研究。
Adv Sci (Weinh). 2021 Oct;8(20):e2100727. doi: 10.1002/advs.202100727. Epub 2021 Aug 11.
2
The State of Data Science in Genomic Nursing.基因组护理中的数据科学现状。
Biol Res Nurs. 2020 Jul;22(3):309-318. doi: 10.1177/1099800420915991. Epub 2020 Apr 8.

本文引用的文献

7
Arrhythmogenic Right Ventricular Cardiomyopathy.致心律失常性右室心肌病
N Engl J Med. 2017 Jan 5;376(1):61-72. doi: 10.1056/NEJMra1509267.
8
10
Debating interaction: the history, and an explanation.辩论互动:历史及解释
Int J Epidemiol. 2015 Aug;44(4):1117-23. doi: 10.1093/ije/dyv053. Epub 2015 Apr 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验