WHO Collaborating Centre, Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy.
University Obstetrics Unit, De Soysa Hospital for Women, Colombo, Sri Lanka.
BMJ Open. 2019 Feb 19;9(2):e023706. doi: 10.1136/bmjopen-2018-023706.
This study was aimed at piloting a prospective individual patient database on hospital deliveries in Colombo, Sri Lanka, and at exploring its use for developing recommendations for improving quality of care (QoC).
Observational study.
De Soysa Maternity Hospital, the largest referral hospital for maternity care in Sri Lanka.
From July 2015 to June 2017, 150 variables were collected for each delivery using a standardised form and entered into a database. Data were analysed every 8 months, and the results made available to local staff. Outcomes of the study included: technical problems; data completeness; data accuracy; key database findings; and use of data.
7504 deliveries were recorded. No technical problem was reported. Data completeness exceeded that of other existing hospital recording systems. Less than 1% data were missing for maternal variables and less than 3% for newborn variables. Mistakes in data collection and entry occurred in 0.01% and 0.09% of maternal and newborn data, respectively. Key QoC indicators identified in comparison with international standards were: relatively low maternal mortality (0.053%); relatively high maternal near-miss cases (3.4%); high rate of induction of labour (24.6%), caesarean section (30.0%) and episiotomy (56.1%); relatively high rate of preterm births (9.4%); low birthweight rate (16.5%); stillbirth (0.97%); and of total deaths in newborn (1.98%). Based on key indicators identified, a list of recommendations was developed, including the use checklists to standardise case management, training, clinical audits and more information for patients. A list of lessons learnt with the implementation of the data collection system was also drawn.
The study shows that the implemented system of data collection can produce a large quantity of reliable information. Most importantly, this experience provides an example on how database findings can be used for discussing hospital practices, identifying gaps and to agree on recommendations for improving QoC.
本研究旨在对斯里兰卡科伦坡的医院分娩进行前瞻性个体患者数据库试点,并探讨其在制定提高护理质量(QoC)建议方面的应用。
观察性研究。
德索萨妇产医院,是斯里兰卡最大的妇产保健转诊医院。
从 2015 年 7 月至 2017 年 6 月,使用标准化表格为每次分娩收集 150 个变量,并将数据输入数据库。每 8 个月分析一次数据,并将结果提供给当地工作人员。研究结果包括:技术问题;数据完整性;数据准确性;数据库关键发现;以及数据使用情况。
记录了 7504 次分娩。没有报告技术问题。数据完整性超过其他现有医院记录系统。产妇变量的数据缺失率不到 1%,新生儿变量的数据缺失率不到 3%。产妇和新生儿数据的采集和录入错误分别占 0.01%和 0.09%。与国际标准相比,确定的关键 QoC 指标包括:相对较低的产妇死亡率(0.053%);相对较高的产妇接近病例(3.4%);较高的引产率(24.6%)、剖宫产率(30.0%)和会阴切开率(56.1%);较高的早产率(9.4%);低出生体重率(16.5%);死胎率(0.97%);以及新生儿总死亡率(1.98%)。根据确定的关键指标,制定了一系列建议,包括使用检查表来规范病例管理、培训、临床审核以及为患者提供更多信息。还总结了实施数据收集系统的经验教训。
研究表明,所实施的数据收集系统可以产生大量可靠的信息。最重要的是,这一经验为如何利用数据库结果讨论医院实践、发现差距以及就提高 QoC 的建议达成一致提供了一个范例。