Department of Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden,
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden, and.
J Neurosci. 2019 May 22;39(21):4009-4022. doi: 10.1523/JNEUROSCI.2339-18.2019. Epub 2019 Feb 19.
The relationship between neuronal impulse activity and neurotransmitter release remains elusive. This issue is especially poorly understood in the neuroendocrine system, with its particular demands on periodically voluminous release of neurohormones at the interface of axon terminals and vasculature. A shortage of techniques with sufficient temporal resolution has hindered real-time monitoring of the secretion of the peptides that dominate among the neurohormones. The lactotropic axis provides an important exception in neurochemical identity, however, as pituitary prolactin secretion is primarily under monoaminergic control, via tuberoinfundibular dopamine (TIDA) neurons projecting to the median eminence (ME). Here, we combined electrical or optogenetic stimulation and fast-scan cyclic voltammetry to address dopamine release dynamics in the male mouse TIDA system. Imposing different discharge frequencies during brief (3 s) stimulation of TIDA terminals in the ME revealed that dopamine output is maximal at 10 Hz, which was found to parallel the TIDA neuron action potential frequency distribution during phasic discharge. Over more sustained stimulation periods (150 s), maximal output occurred at 5 Hz, similar to the average action potential firing frequency of tonically active TIDA neurons. Application of the dopamine transporter blocker, methylphenidate, significantly increased dopamine levels in the ME, supporting a functional role of the transporter at the neurons' terminals. Lastly, TIDA neuron stimulation at the cell body yielded perisomatic release of dopamine, which may contribute to an ultrafast negative feedback mechanism to constrain TIDA electrical activity. Together, these data shed light on how spiking patterns in the neuroendocrine system translate to vesicular release toward the pituitary and identify how dopamine dynamics are controlled in the TIDA system at different cellular compartments. A central question in neuroscience is the complex relationship between neuronal discharge activity and transmitter release. By combining optogenetic stimulation and voltammetry, we address this issue in dopamine neurons of the neuroendocrine system, which faces particular spatiotemporal demands on exocytotic release; large amounts of neurohormone need to be secreted into the portal capillaries with precise timing to adapt to physiological requirements. Our data show that release is maximal around the neurons' default firing frequency. We further provide support for functional dopamine transport at the neurovascular terminals, shedding light on a long-standing controversy about the existence of neuroendocrine transmitter reuptake. Finally, we show that dopamine release occurs also at the somatodendritic level, providing a substrate for an ultrashort autoregulatory feedback loop.
神经元冲动活动与神经递质释放之间的关系仍然难以捉摸。这个问题在神经内分泌系统中尤其理解不足,因为神经内分泌系统在轴突末梢和脉管系统的界面处需要周期性地大量释放神经激素。缺乏具有足够时间分辨率的技术阻碍了对主导神经激素的肽类分泌的实时监测。然而,催乳素分泌轴在神经化学特性上提供了一个重要的例外,因为垂体催乳素的分泌主要受单胺能控制,通过投射到正中隆起(ME)的结节漏斗多巴胺(TIDA)神经元。在这里,我们结合电或光遗传学刺激和快速扫描循环伏安法来解决雄性小鼠 TIDA 系统中多巴胺释放的动力学问题。在 ME 中短暂(3 秒)刺激 TIDA 末梢时施加不同的放电频率,结果表明多巴胺输出在 10 Hz 时达到最大值,这与相位放电期间 TIDA 神经元动作电位频率分布相平行。在更持续的刺激期间(150 秒),最大输出发生在 5 Hz,类似于持续活动的 TIDA 神经元的平均动作电位发射频率。多巴胺转运体阻滞剂哌醋甲酯的应用显著增加了 ME 中的多巴胺水平,支持转运体在神经元末梢的功能作用。最后,TIDA 神经元在细胞体的刺激产生了多巴胺的胞体释放,这可能有助于一种超快的负反馈机制来限制 TIDA 的电活动。总的来说,这些数据阐明了神经内分泌系统中的尖峰模式如何转化为朝向垂体的囊泡释放,并确定了多巴胺动力学在不同细胞区室中的 TIDA 系统中是如何被控制的。神经科学中的一个核心问题是神经元放电活动与递质释放之间的复杂关系。通过结合光遗传学刺激和伏安法,我们解决了神经内分泌系统中多巴胺神经元的这个问题,该系统在囊泡释放方面面临着特殊的时空需求;大量的神经激素需要以精确的时间间隔分泌到门脉毛细血管中,以适应生理需求。我们的数据表明,释放在神经元的默认放电频率周围达到最大值。我们进一步为神经血管末梢的功能性多巴胺转运提供了支持,这为关于神经内分泌递质再摄取存在的长期争议提供了线索。最后,我们表明多巴胺也在树突-胞体水平释放,为超短自调节反馈回路提供了基础。