Lab of Innovative Drug Research and Bioinformatics, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou 310058 , China.
Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science , Chongqing University , Chongqing 401331 , China.
ACS Chem Neurosci. 2019 May 15;10(5):2467-2480. doi: 10.1021/acschemneuro.8b00729. Epub 2019 Feb 26.
Histone deacetylase 6 (HDAC6) plays a key role in a variety of neurological disorders, which makes it attractive drug target for the treatment of Alzheimer's disease, Parkinson's disease, and memory/learning impairment. The selectivity of HDAC6 inhibitors (sHDAC6Is) are widely considered to be susceptible to the sizes of their Cap group and the physicochemical properties of their linker or zinc-binding group, which makes the discovery of new sHDAC6Is extremely difficult. With the discovery of the distinct selectivity between Trichostatin A (TSA) enantiomers, the chirality residing in the connective units between TSA's Cap and linker shows a great impact on its selectivity. However, the mechanism underlining ( S)-TSA's selectivity is still elusive, and the way chirality switches the selective ( S)-TSA to nonselective ( R)-TSA is unknown. In this study, multiple computational approaches were collectively applied to explore, validate, and differentiate the binding modes of two TSA enantiomers in HDACs (especially the HDAC6) at atomic level. First, two nonconservative residues (G200/M205 and Y197/F202 in HDAC1/6) in loop3 and four conservative residues deep inside the hydrophobic binding pocket were discovered as the decisive residues of ( S)-TSA's selectivity toward HDAC6. Then, a novel mechanism underlying the selectivity of ( S)-TSA toward HDAC6 was proposed, which was composed of the trigger by two nonconservative residues F202 and M205 in HDAC6 and a subsequently improved fit of ( S)-TSA deep inside HDAC6's hydrophobic binding pocket. TSA enantiomers were used as a molecular probe to explore the mechanism underlying sHDAC6Is' selectivity in this study. Because of their decisive roles in ( S)-TSA's selectivity to HDAC6, both F202 and M205 in HDAC6 should be especially considered in the discovery of novel sHDAC6Is.
组蛋白去乙酰化酶 6(HDAC6)在多种神经疾病中发挥着关键作用,使其成为治疗阿尔茨海默病、帕金森病和记忆/学习障碍的有吸引力的药物靶点。HDAC6 抑制剂(sHDAC6Is)的选择性被广泛认为易受其 Cap 基团的大小和其连接子或锌结合基团的理化性质的影响,这使得新的 sHDAC6Is 的发现极其困难。随着 Trichostatin A(TSA)对映异构体之间独特选择性的发现,TSA 的 Cap 和连接子之间的连接单元中的手性对其选择性有很大的影响。然而,(S)-TSA 选择性的机制仍然难以捉摸,手性将选择性(S)-TSA 切换为非选择性(R)-TSA 的方式尚不清楚。在这项研究中,多种计算方法被联合应用于在原子水平上探索、验证和区分两种 TSA 对映异构体在 HDAC 中的结合模式(特别是 HDAC6)。首先,在 loop3 中发现了两个非保守残基(HDAC1/6 中的 G200/M205 和 Y197/F202)和四个保守残基深入到疏水性结合口袋中,这些残基是(S)-TSA 对 HDAC6 选择性的决定性残基。然后,提出了(S)-TSA 对 HDAC6 选择性的新机制,该机制由 HDAC6 中的两个非保守残基 F202 和 M205 触发,随后(S)-TSA 更适合深入到 HDAC6 的疏水性结合口袋中。在本研究中,TSA 对映异构体被用作分子探针来探索 sHDAC6Is 选择性的机制。由于它们在(S)-TSA 对 HDAC6 的选择性中起着决定性的作用,在新型 sHDAC6Is 的发现中应特别考虑 HDAC6 中的 F202 和 M205。