分析生物和人工神经网络:协同的挑战与机遇?
Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
机构信息
DeepMind, London, UK.
Computational Neuroengineering, Department of Electrical and Computer Engineering, Technical University of Munich, Germany.
出版信息
Curr Opin Neurobiol. 2019 Apr;55:55-64. doi: 10.1016/j.conb.2019.01.007. Epub 2019 Feb 19.
Deep neural networks (DNNs) transform stimuli across multiple processing stages to produce representations that can be used to solve complex tasks, such as object recognition in images. However, a full understanding of how they achieve this remains elusive. The complexity of biological neural networks substantially exceeds the complexity of DNNs, making it even more challenging to understand the representations they learn. Thus, both machine learning and computational neuroscience are faced with a shared challenge: how can we analyze their representations in order to understand how they solve complex tasks? We review how data-analysis concepts and techniques developed by computational neuroscientists can be useful for analyzing representations in DNNs, and in turn, how recently developed techniques for analysis of DNNs can be useful for understanding representations in biological neural networks. We explore opportunities for synergy between the two fields, such as the use of DNNs as in silico model systems for neuroscience, and how this synergy can lead to new hypotheses about the operating principles of biological neural networks.
深度神经网络 (DNNs) 通过多个处理阶段转换刺激,生成可用于解决复杂任务的表示,例如图像中的目标识别。然而,要完全理解它们是如何做到这一点的仍然难以捉摸。生物神经网络的复杂性大大超过了 DNNs 的复杂性,这使得理解它们学习的表示更加具有挑战性。因此,机器学习和计算神经科学都面临着一个共同的挑战:我们如何分析它们的表示,以了解它们如何解决复杂任务?我们回顾了计算神经科学家开发的数据分析概念和技术如何有助于分析 DNN 中的表示,以及反过来,最近开发的用于分析 DNN 的技术如何有助于理解生物神经网络中的表示。我们探讨了这两个领域之间的协同机会,例如将 DNN 用作神经科学的计算机模型系统,以及这种协同如何为生物神经网络的工作原理带来新的假设。