Suppr超能文献

视觉感受野具有固有非线性本质的证据。

Evidence for the intrinsically nonlinear nature of receptive fields in vision.

机构信息

Universitat Pompeu Fabra, Barcelona, Spain.

Universitat de Valencia, Valencia, Spain.

出版信息

Sci Rep. 2020 Oct 1;10(1):16277. doi: 10.1038/s41598-020-73113-0.

Abstract

The responses of visual neurons, as well as visual perception phenomena in general, are highly nonlinear functions of the visual input, while most vision models are grounded on the notion of a linear receptive field (RF). The linear RF has a number of inherent problems: it changes with the input, it presupposes a set of basis functions for the visual system, and it conflicts with recent studies on dendritic computations. Here we propose to model the RF in a nonlinear manner, introducing the intrinsically nonlinear receptive field (INRF). Apart from being more physiologically plausible and embodying the efficient representation principle, the INRF has a key property of wide-ranging implications: for several vision science phenomena where a linear RF must vary with the input in order to predict responses, the INRF can remain constant under different stimuli. We also prove that Artificial Neural Networks with INRF modules instead of linear filters have a remarkably improved performance and better emulate basic human perception. Our results suggest a change of paradigm for vision science as well as for artificial intelligence.

摘要

视觉神经元的反应以及一般的视觉感知现象都是视觉输入的高度非线性函数,而大多数视觉模型都是基于线性感受野(RF)的概念。线性 RF 存在许多内在问题:它随输入而变化,它预先设定了视觉系统的一组基函数,并且与最近关于树突计算的研究相冲突。在这里,我们建议以非线性方式对 RF 进行建模,引入内在非线性感受野(INRF)。除了更符合生理实际并体现有效的表示原理外,INRF 还具有广泛影响的关键特性:对于一些需要线性 RF 随输入变化才能预测响应的视觉科学现象,INRF 在不同刺激下可以保持不变。我们还证明,具有 INRF 模块而不是线性滤波器的人工神经网络具有显著提高的性能,并更好地模拟基本的人类感知。我们的结果表明,视觉科学以及人工智能的范式发生了变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2293/7530701/a2ae75976cf0/41598_2020_73113_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验