Suppr超能文献

人类 V1-V3 中的朝向调谐周围归一化。

Normalization by orientation-tuned surround in human V1-V3.

机构信息

Department of Psychology and Center for Neural Science, New York University, New York City, New York, United States of America.

Department of Cognitive Science, Rensselaer Polytechnic Institute, Troy, New York, United States of America.

出版信息

PLoS Comput Biol. 2023 Dec 27;19(12):e1011704. doi: 10.1371/journal.pcbi.1011704. eCollection 2023 Dec.

Abstract

An influential account of neuronal responses in primary visual cortex is the normalized energy model. This model is often implemented as a multi-stage computation. The first stage is linear filtering. The second stage is the extraction of contrast energy, whereby a complex cell computes the squared and summed outputs of a pair of the linear filters in quadrature phase. The third stage is normalization, in which a local population of complex cells mutually inhibit one another. Because the population includes cells tuned to a range of orientations and spatial frequencies, the result is that the responses are effectively normalized by the local stimulus contrast. Here, using evidence from human functional MRI, we show that the classical model fails to account for the relative responses to two classes of stimuli: straight, parallel, band-passed contours (gratings), and curved, band-passed contours (snakes). The snakes elicit fMRI responses that are about twice as large as the gratings, yet a traditional divisive normalization model predicts responses that are about the same. Motivated by these observations and others from the literature, we implement a divisive normalization model in which cells matched in orientation tuning ("tuned normalization") preferentially inhibit each other. We first show that this model accounts for differential responses to these two classes of stimuli. We then show that the model successfully generalizes to other band-pass textures, both in V1 and in extrastriate cortex (V2 and V3). We conclude that even in primary visual cortex, complex features of images such as the degree of heterogeneity, can have large effects on neural responses.

摘要

神经响应在初级视觉皮层中的一个有影响力的解释是归一化能量模型。该模型通常被实现为一个多阶段的计算。第一阶段是线性滤波。第二阶段是对比度能量的提取,其中一个复杂细胞计算一对线性滤波器的正交相位的平方和输出。第三阶段是归一化,其中一组复杂细胞相互抑制。由于该群体包括对一系列方向和空间频率敏感的细胞,因此结果是响应通过局部刺激对比度有效地归一化。在这里,我们使用来自人类功能磁共振成像的证据表明,经典模型不能解释两类刺激的相对响应:直线、平行、带通轮廓(光栅)和曲线、带通轮廓(蛇)。蛇引起的 fMRI 响应大约是光栅的两倍,但传统的除法归一化模型预测的响应大致相同。受这些观察结果和文献中的其他观察结果的启发,我们实现了一个除法归一化模型,其中在方向调谐中匹配的细胞(“调谐归一化”)优先相互抑制。我们首先表明,该模型可以解释对这两类刺激的不同响应。然后,我们表明该模型成功地推广到其他带通纹理,无论是在 V1 还是在外侧纹状体皮层(V2 和 V3)。我们得出的结论是,即使在初级视觉皮层中,图像的复杂特征,如异质性程度,也会对神经响应产生很大的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/168e/10793941/e138b3923ed5/pcbi.1011704.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验