Suppr超能文献

基于特定于主题的频段的系统来识别踩踏运动想象:用于下肢康复的脑机接口。

System based on subject-specific bands to recognize pedaling motor imagery: towards a BCI for lower-limb rehabilitation.

机构信息

Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, 29075-910 Vitoria, Brazil. Center of Medical Biophysics, University of Oriente, 90500-Santiago de Cuba, Cuba.

出版信息

J Neural Eng. 2019 Jul 23;16(5):056005. doi: 10.1088/1741-2552/ab08c8.

Abstract

OBJECTIVE

The aim of this study is to propose a recognition system of pedaling motor imagery for lower-limb rehabilitation, which uses unsupervised methods to improve the feature extraction, and consequently the class discrimination of EEG patterns.

APPROACH

After applying a spectrogram based on short-time Fourier transform (SSTFT), both sparseness constraints and total power are used on the time-frequency representation to automatically locate the subject-specific bands that pack the highest power during pedaling motor imagery. The output frequency bands are employed in the recognition system to automatically adjust the cut-off frequency of a low-pass filter (Butterworth, 2nd order). Riemannian geometry is also used to extract spatial features, which are further analyzed through a fast version of neighborhood component analysis to increase the class separability.

MAIN RESULTS

For ten healthy subjects, our recognition system based on subject-specific bands achieved mean accuracy of [Formula: see text] and mean Kappa of [Formula: see text].

SIGNIFICANCE

Our approach can be used to obtain a low-cost robotic rehabilitation system based on motorized pedal, as pedaling exercises have shown great potential for improving the muscular performance of post-stroke survivors.

摘要

目的

本研究旨在提出一种用于下肢康复的踩踏运动想象识别系统,该系统使用无监督方法来改进特征提取,从而提高 EEG 模式的分类判别能力。

方法

在应用基于短时傅里叶变换(SSTFT)的频谱图之后,对时频表示进行稀疏约束和总功率约束,以自动定位在踩踏运动想象过程中具有最高功率的特定于主体的频带。输出频带用于识别系统中,以自动调整低通滤波器(巴特沃斯,二阶)的截止频率。黎曼几何也用于提取空间特征,通过快速邻域成分分析进一步分析这些特征,以提高类可分离性。

主要结果

对于 10 名健康受试者,我们基于特定于主体的频带的识别系统实现了[Formula: see text]的平均准确率和[Formula: see text]的平均 Kappa 值。

意义

我们的方法可用于获得基于电动脚踏的低成本机器人康复系统,因为踩踏运动已显示出对改善中风幸存者肌肉性能的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验