Postgraduate Program in Biotechnology, Federal University of Espirito Santo (UFES), 29075-910 Vitoria, Brazil.
Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo (UFES), 29075-910 Vitoria, Brazil.
Sensors (Basel). 2021 Mar 12;21(6):2020. doi: 10.3390/s21062020.
Recently, studies on cycling-based brain-computer interfaces (BCIs) have been standing out due to their potential for lower-limb recovery. In this scenario, the behaviors of the sensory motor rhythms and the brain connectivity present themselves as sources of information that can contribute to interpreting the cortical effect of these technologies. This study aims to analyze how sensory motor rhythms and cortical connectivity behave when volunteers command reactive motor imagery (MI) BCI that provides passive pedaling feedback. We studied 8 healthy subjects who performed pedaling MI to command an electroencephalography (EEG)-based BCI with a motorized pedal to receive passive movements as feedback. The EEG data were analyzed under the following four conditions: resting, MI calibration, MI online, and receiving passive pedaling (on-line phase). Most subjects produced, over the foot area, significant event-related desynchronization (ERD) patterns around Cz when performing MI and receiving passive pedaling. The sharpest decrease was found for the low beta band. The connectivity results revealed an exchange of information between the supplementary motor area (SMA) and parietal regions during MI and passive pedaling. Our findings point to the primary motor cortex activation for most participants and the connectivity between SMA and parietal regions during pedaling MI and passive pedaling.
最近,基于循环的脑机接口 (BCI) 的研究因其在下肢恢复方面的潜力而备受关注。在这种情况下,感觉运动节律和大脑连通性的行为表现为信息源,可以有助于解释这些技术的皮质效应。本研究旨在分析志愿者在执行提供被动踩踏反馈的反应性运动想象 (MI) BCI 时,感觉运动节律和皮质连通性如何表现。我们研究了 8 名健康受试者,他们执行踩踏 MI 以命令基于脑电图 (EEG) 的电动脚踏板 BCI 以接收被动运动作为反馈。在以下四种情况下分析 EEG 数据:休息、MI 校准、MI 在线和接收被动踩踏(在线阶段)。当执行 MI 和接收被动踩踏时,大多数受试者在脚部区域产生 Cz 周围的显著事件相关去同步 (ERD) 模式。最低频带的下降最明显。连通性结果显示,在 MI 和被动踩踏期间,辅助运动区 (SMA) 和顶叶区域之间存在信息交换。我们的发现指向大多数参与者的初级运动皮层激活,以及 SMA 和顶叶区域之间的连通性在踩踏 MI 和被动踩踏期间。