Suppr超能文献

深度学习预测 AMD 进展:一项初步研究。

Deep Learning for Prediction of AMD Progression: A Pilot Study.

机构信息

Voxeleron LLC, Pleasanton, California, United States.

NIHR Moorfields Biomedical Research Centre, London, United Kingdom.

出版信息

Invest Ophthalmol Vis Sci. 2019 Feb 1;60(2):712-722. doi: 10.1167/iovs.18-25325.

Abstract

PURPOSE

To develop and assess a method for predicting the likelihood of converting from early/intermediate to advanced wet age-related macular degeneration (AMD) using optical coherence tomography (OCT) imaging and methods of deep learning.

METHODS

Seventy-one eyes of 71 patients with confirmed early/intermediate AMD with contralateral wet AMD were imaged with OCT three times over 2 years (baseline, year 1, year 2). These eyes were divided into two groups: eyes that had not converted to wet AMD (n = 40) at year 2 and those that had (n = 31). Two deep convolutional neural networks (CNN) were evaluated using 5-fold cross validation on the OCT data at baseline to attempt to predict which eyes would convert to advanced AMD at year 2: (1) VGG16, a popular CNN for image recognition was fine-tuned, and (2) a novel, simplified CNN architecture was trained from scratch. Preprocessing was added in the form of a segmentation-based normalization to reduce variance in the data and improve performance.

RESULTS

Our new architecture, AMDnet, with preprocessing, achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.89 at the B-scan level and 0.91 for volumes. Results for VGG16, an established CNN architecture, with preprocessing were 0.82 for B-scans/0.87 for volumes versus 0.66 for B-scans/0.69 for volumes without preprocessing.

CONCLUSIONS

A CNN with layer segmentation-based preprocessing shows strong predictive power for the progression of early/intermediate AMD to advanced AMD. Use of the preprocessing was shown to improve performance regardless of the network architecture.

摘要

目的

开发并评估一种使用光学相干断层扫描(OCT)成像和深度学习方法预测早期/中期向晚期湿性年龄相关性黄斑变性(AMD)转化可能性的方法。

方法

71 例经证实的早期/中期 AMD 伴对侧湿性 AMD 患者的 71 只眼在 2 年内接受了 3 次 OCT 成像(基线、第 1 年和第 2 年)。这些眼分为两组:第 2 年未转化为湿性 AMD 的眼(n = 40)和转化为湿性 AMD 的眼(n = 31)。使用 5 折交叉验证对基线时的 OCT 数据进行评估,评估了两种深度卷积神经网络(CNN):(1)VGG16,一种用于图像识别的流行 CNN,进行了微调,(2)从头开始训练了一种新的简化 CNN 架构。通过基于分割的归一化预处理来减少数据中的方差并提高性能。

结果

我们的新架构 AMDnet 与预处理相结合,在 B 扫描水平的接收者操作特征(ROC)曲线下面积(AUC)为 0.89,在体积水平的 AUC 为 0.91。经过预处理的成熟 CNN 架构 VGG16 的结果分别为 0.82 用于 B 扫描/0.87 用于体积,而未经预处理的结果分别为 0.66 用于 B 扫描/0.69 用于体积。

结论

具有基于层分割预处理的 CNN 对早期/中期 AMD 向晚期 AMD 的进展具有很强的预测能力。无论网络架构如何,使用预处理都可以提高性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验