Weckesser J, Mayer H
Institut für Biologie II, Mikrobiologie, der Albert-Ludwigs-Universität, Freiburg, F.R.G.
FEMS Microbiol Rev. 1988 Apr-Jun;4(2):143-53. doi: 10.1111/j.1574-6968.1988.tb02740.x.
Lipid A analyses confirm not only the present taxa of the purple nonsulfur bacteria (formerly Rhodospirillaceae), but also phylogenetical relatedness of distinct phototrophic to distinct non-phototrophic bacteria, as was suggested by cataloguing 16S rRNA. For example, lipid A with ester-bound 3-OH-10:0 and the rare amide-linked 3-oxo-14:0 is common to the phototrophic Rhodobacter capsulatus and Rhodobacter sphaeroides and also to Paracoccus denitrificans and Thiobacillus versutus. 'Lipid ADAG' (lipid A with 2,3-diamino-D-glucose (DAG)) occurs in the phototrophic Rhodopseudomonas viridis and Rhodopseudomonas palustris and also in the related non-phototrophic species, e.g., Nitrobacter winogradskyi, Pseudomonas diminuta, or Thiobacillus ferrooxidans. The phylogenetically more coherent purple sulfur bacteria (Chromatiaceae) uniformly contain D-mannose in their phosphate-free lipid A. Among the green bacteria, only the Chlorobiaceae but not the likewise chlorosome-containing Chloroflexaceae contain lipopolysaccharide. Lipid ADAG from R. viridis is a structural analogue of a biosynthetic precursor (lipid X) of enterobacterial lipid A. Lipid A synthase from Salmonella accepts not only lipid X but also the synthetic di-N-acyl-2,3-diamino-D-glucose analogue as substrate (Raetz, C.R.H., unpublished results). More and more naturally occurring lipid A's with both, 2,3-diaminoglucose and glucosamine ('mixed' lipid A, with 2,3-diaminoglucose or glucosamine dominating) are being found. Newly recognized lipid A and lipid ADAG types might offer the possibility of differentially stimulating desired biological activities in animals without also having the undesired endotoxic activities. The non-toxic lipid A from Rhodopseudomonas viridis for example is able to stimulate prostaglandin secretion in peritoneal macrophages and can be used as an antagonist to the endotoxic shock caused by Salmonella lipopolysaccharide.
脂多糖A分析不仅证实了目前紫色非硫细菌(以前的红螺菌科)的分类单元,还证实了不同光合细菌与不同非光合细菌之间的系统发育相关性,这正如16S rRNA编目所表明的那样。例如,具有酯键连接的3-羟基-10:0和罕见的酰胺键连接的3-氧代-14:0的脂多糖A,在光合性的荚膜红细菌和球形红细菌中很常见,在反硝化副球菌和氧化硫硫杆菌中也很常见。“脂多糖ADAG”(具有2,3-二氨基-D-葡萄糖(DAG)的脂多糖A)存在于光合性的绿假单胞菌和沼泽红假单胞菌中,也存在于相关的非光合性物种中,例如维氏硝化杆菌、微小假单胞菌或氧化亚铁硫杆菌。系统发育上更连贯的紫色硫细菌(着色菌科)在其无磷酸脂多糖A中均含有D-甘露糖。在绿色细菌中,只有绿菌科含有脂多糖,而同样含有叶绿体的绿弯菌科则不含有。来自绿假单胞菌的脂多糖ADAG是肠杆菌脂多糖A生物合成前体(脂多糖X)的结构类似物。来自沙门氏菌的脂多糖A合酶不仅接受脂多糖X,还接受合成的二-N-酰基-2,3-二氨基-D-葡萄糖类似物作为底物(Raetz,C.R.H.,未发表的结果)。越来越多天然存在的同时含有2,3-二氨基葡萄糖和葡糖胺的脂多糖A(“混合”脂多糖A,以2,3-二氨基葡萄糖或葡糖胺为主)被发现。新发现的脂多糖A和脂多糖ADAG类型可能提供有区别地刺激动物中所需生物活性而又不具有不良内毒素活性的可能性。例如,来自绿假单胞菌的无毒脂多糖A能够刺激腹膜巨噬细胞分泌前列腺素,并可用作沙门氏菌脂多糖引起的内毒素休克的拮抗剂。