Niehaus Center For Inherited Cancer Genomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Genet Med. 2019 Sep;21(9):2116-2125. doi: 10.1038/s41436-019-0463-8. Epub 2019 Feb 21.
Cancer care professionals are confronted with interpreting results from multiplexed gene sequencing of patients at hereditary risk for cancer. Assessments for variant classification now require orthogonal data searches and aggregation of multiple lines of evidence from diverse resources. The clinical genetics community needs a fast algorithm that automates American College of Medical Genetics and Genomics (ACMG) based variant classification and provides uniform results.
Pathogenicity of Mutation Analyzer (PathoMAN) automates germline genomic variant curation from clinical sequencing based on ACMG guidelines. PathoMAN aggregates multiple tracks of genomic, protein, and disease specific information from public sources. We compared expertly curated variant data from clinical laboratories to assess performance.
PathoMAN achieved a high overall concordance of 94.4% for pathogenic and 81.1% for benign variants. We observed negligible discordance (0.3% pathogenic, 0% benign) when contrasted against expert curated variants. Some loss of resolution (5.3% pathogenic, 18.9% benign) and gain of resolution (1.6% pathogenic, 3.8% benign) were also observed.
Automation of variant curation enables unbiased, fast, efficient delivery of results in both clinical and laboratory research. We highlight the advantages and weaknesses related to the programmable automation of variant classification. PathoMAN will aid in rapid variant classification by generating robust models using a knowledgebase of diverse genetic data ( https://pathoman.mskcc.org).
癌症护理专业人员面临着解读具有癌症遗传风险的患者的多重基因测序结果。现在,变体分类评估需要进行正交数据搜索,并从多个来源聚合多种证据。临床遗传学界需要一种快速算法,该算法可以自动执行基于美国医学遗传学与基因组学学会(ACMG)的变体分类,并提供统一的结果。
Mutation Analyzer(PathoMAN)根据 ACMG 指南,自动对来自临床测序的种系基因组变体进行管理。PathoMAN 从公共资源聚合了多个基因组、蛋白质和疾病特异性信息轨道。我们比较了临床实验室中经过专家管理的变体数据,以评估性能。
PathoMAN 对致病性变体的总体一致性达到了 94.4%,对良性变体的一致性达到了 81.1%。与经过专家管理的变体相比,我们观察到几乎没有差异(致病性为 0.3%,良性为 0%)。还观察到一些分辨率的降低(致病性为 5.3%,良性为 18.9%)和分辨率的提高(致病性为 1.6%,良性为 3.8%)。
变体管理的自动化实现了在临床和实验室研究中公正、快速、高效的结果交付。我们强调了与变体分类可编程自动化相关的优缺点。PathoMAN 将通过使用多样化遗传数据知识库生成强大的模型,来帮助快速进行变体分类(https://pathoman.mskcc.org)。