Suppr超能文献

一种基于期望最大化算法的Q矩阵验证方法。

An EM-Based Method for Q-Matrix Validation.

作者信息

Wang Wenyi, Song Lihong, Ding Shuliang, Meng Yaru, Cao Canxi, Jie Yongjing

机构信息

Jiangxi Normal University, Jiangxi, China.

Xi'an Jiaotong University, Shaanxi, China.

出版信息

Appl Psychol Meas. 2018 Sep;42(6):446-459. doi: 10.1177/0146621617752991. Epub 2018 Feb 20.

Abstract

With the purpose to assist the subject matter experts in specifying their Q-matrices, the authors used expectation-maximization (EM)-based algorithm to investigate three alternative Q-matrix validation methods, namely, the maximum likelihood estimation (MLE), the marginal maximum likelihood estimation (MMLE), and the intersection and difference (ID) method. Their efficiency was compared, respectively, with that of the sequential EM-based δ method and its extension (ς), the γ method, and the nonparametric method in terms of correct recovery rate, true negative rate, and true positive rate under the deterministic-inputs, noisy "and" gate (DINA) model and the reduced reparameterized unified model (rRUM). Simulation results showed that for the rRUM, the MLE performed better for low-quality tests, whereas the MMLE worked better for high-quality tests. For the DINA model, the ID method tended to produce better quality Q-matrix estimates than other methods for large sample sizes (i.e., 500 or 1,000). In addition, the Q-matrix was more precisely estimated under the discrete uniform distribution than under the multivariate normal threshold model for all the above methods. On average, the ς and ID method with higher true negative rates are better for correcting misspecified Q-entries, whereas the MLE with higher true positive rates is better for retaining the correct Q-entries. Experiment results on real data set confirmed the effectiveness of the MLE.

摘要

为了帮助主题专家确定他们的Q矩阵,作者使用基于期望最大化(EM)的算法研究了三种替代的Q矩阵验证方法,即最大似然估计(MLE)、边际最大似然估计(MMLE)和交集与差集(ID)方法。在确定性输入、噪声“与”门(DINA)模型和简化重新参数化统一模型(rRUM)下,分别将它们的效率与基于顺序EM的δ方法及其扩展(ς)、γ方法和非参数方法在正确恢复率、真阴性率和真阳性率方面进行了比较。模拟结果表明,对于rRUM,MLE在低质量测试中表现更好,而MMLE在高质量测试中效果更佳。对于DINA模型,在大样本量(即500或1000)时,ID方法往往比其他方法能产生质量更好的Q矩阵估计。此外,对于上述所有方法,在离散均匀分布下比在多元正态阈值模型下能更精确地估计Q矩阵。平均而言,真阴性率较高的ς和ID方法在纠正错误指定的Q条目方面表现更好,而真阳性率较高的MLE在保留正确的Q条目方面表现更佳。在真实数据集上的实验结果证实了MLE的有效性。

相似文献

1
An EM-Based Method for Q-Matrix Validation.一种基于期望最大化算法的Q矩阵验证方法。
Appl Psychol Meas. 2018 Sep;42(6):446-459. doi: 10.1177/0146621617752991. Epub 2018 Feb 20.
3
A General Method of Empirical Q-matrix Validation.一种经验性Q矩阵验证的通用方法。
Psychometrika. 2016 Jun;81(2):253-73. doi: 10.1007/s11336-015-9467-8. Epub 2015 May 6.
4
Bayesian Estimation of the DINA Q matrix.贝叶斯估计 DINA Q 矩阵。
Psychometrika. 2018 Mar;83(1):89-108. doi: 10.1007/s11336-017-9579-4. Epub 2017 Aug 31.
5
An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model.多选项 G-DINA 模型的实证 Q 矩阵验证方法。
Psychometrika. 2022 Jun;87(2):693-724. doi: 10.1007/s11336-021-09821-x. Epub 2021 Nov 29.
10
Q-Matrix Refinement Based on Item Fit Statistic RMSEA.基于项目拟合统计量RMSEA的Q矩阵优化
Appl Psychol Meas. 2019 Oct;43(7):527-542. doi: 10.1177/0146621618813104. Epub 2018 Dec 4.

引用本文的文献

1
Using machine learning to improve Q-matrix validation.使用机器学习改进 Q 矩阵验证。
Behav Res Methods. 2024 Mar;56(3):1916-1935. doi: 10.3758/s13428-023-02126-0. Epub 2023 May 25.
6
Incorporating the Q-Matrix Into Multidimensional Item Response Theory Models.将Q矩阵纳入多维项目反应理论模型
Educ Psychol Meas. 2019 Aug;79(4):665-687. doi: 10.1177/0013164418814898. Epub 2018 Nov 30.

本文引用的文献

1
Online Item Calibration for Q-Matrix in CD-CAT.认知诊断计算机自适应测验中Q矩阵的在线项目校准
Appl Psychol Meas. 2015 Jan;39(1):5-15. doi: 10.1177/0146621613513065. Epub 2014 Jan 6.
3
Model Similarity, Model Selection, and Attribute Classification.模型相似性、模型选择与属性分类。
Appl Psychol Meas. 2016 May;40(3):200-217. doi: 10.1177/0146621615621717. Epub 2016 Jan 18.
5
A General Method of Empirical Q-matrix Validation.一种经验性Q矩阵验证的通用方法。
Psychometrika. 2016 Jun;81(2):253-73. doi: 10.1007/s11336-015-9467-8. Epub 2015 May 6.
6
Theory of the Self-learning -Matrix.自学习矩阵理论
Bernoulli (Andover). 2013 Nov 1;19(5A):1790-1817. doi: 10.3150/12-BEJ430.
7
Psychometrics behind Computerized Adaptive Testing.计算机自适应测试背后的心理测量学
Psychometrika. 2015 Mar;80(1):1-20. doi: 10.1007/s11336-014-9401-5. Epub 2014 Feb 6.
8
Consistency of nonparametric classification in cognitive diagnosis.认知诊断中非参数分类的一致性
Psychometrika. 2015 Mar;80(1):85-100. doi: 10.1007/s11336-013-9372-y. Epub 2013 Dec 3.
9
Data-Driven Learning of Q-Matrix.基于数据驱动的Q矩阵学习
Appl Psychol Meas. 2012 Oct;36(7):548-564. doi: 10.1177/0146621612456591.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验