Institute of Plant Biology, Laboratory of Photosynthetic Membranes, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
Physiol Plant. 2019 May;166(1):22-32. doi: 10.1111/ppl.12945. Epub 2019 Mar 18.
Recent chlorophyll-a fluorescence yield measurements, using single-turnover saturating flashes (STSFs), have revealed the involvement of a rate-limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron-inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819 nm, reflecting the photooxidation and re-reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark-adapted sample, the decay kinetics could be described with lifetimes of 17 ns (∼50%) and 167 ns (∼30%), and a longer-lived component (∼20%). This kinetics are attributed to re-reduction of P680 by the donor side of PSII. In contrast, upon second-flash (with Δt between 5 μs and 100 ms) or repetitive excitation, the 819 nm absorption changes decayed with lifetimes of about 2 ns (∼60%) and 10 ns (∼30%), attributed to recombination of the primary radical pair P680 Pheo , and a small longer-lived component (∼10%). These data confirm that only the first STSF is capable of generating stable charge separation - leading to the reduction of Q ; and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double-flash experiments indicate that the rate-limiting steps, detected by chlorophyll-a fluorescence, are not correlated with the turnover of P680.
最近使用单 turnover 饱和闪光(STSFs)的叶绿素-a 荧光产量测量结果表明,在第一次闪光诱导的电荷分离之后的反应中存在限速步骤。正如这里所示,在从 Thermosynechococcus vulcanus 中分离的 Diuron 抑制的 PSII 核心复合物中,荧光最大值只能通过一系列 STSFs 达到。为了阐明 STSF 系列中荧光产量增加的起源,我们在 819nm 处进行了瞬态吸收测量,反映了初级电子供体 P680 的光氧化和再还原动力学。在黑暗适应样品的单次闪光激发下,衰减动力学可以用寿命为 17ns(约 50%)和 167ns(约 30%)以及更长寿命的组件(约 20%)来描述。这种动力学归因于 P680 通过 PSII 的供体侧的再还原。相比之下,在第二次闪光(Δt 在 5μs 和 100ms 之间)或重复激发时,819nm 吸收变化的衰减具有约 2ns(约 60%)和 10ns(约 30%)的寿命,归因于初级自由基对 P680 pheo 的复合,以及一个较小的长寿命组件(约 10%)。这些数据证实,只有第一个 STSF 能够产生稳定的电荷分离-导致 Q 的还原;因此,连续闪光引起的荧光产量增加必须具有不同的物理起源。我们的双闪光实验表明,由叶绿素-a 荧光检测到的限速步骤与 P680 的周转率无关。