Garab G
Institute of Plant Biology, HUN-REN Biological Research Centre, Temesvári körút 62, 6726 Szeged, Hungary.
Department of Physics, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.
Photosynthetica. 2024 May 27;62(2):204-208. doi: 10.32615/ps.2024.022. eCollection 2024.
The present paper aims to open discussion on the information content, physical mechanism(s), and measuring protocols to determine the partitioning of the absorbed light energy in oxygenic photosynthetic organisms. Revisiting these questions is incited by recent findings discovering that PSII, in addition to its open and closed state, assumes a light-adapted charge-separated state and that chlorophyll fluorescence induction (ChlF), besides the photochemical activity of PSII, reflects the structural dynamics of its reaction center complex. Thus, the photochemical quantum yield of PSII cannot be determined from the conventional ChlF-based protocol. Consequently, the codependent quantity - the quantum yield of the so-called nonregulatory constitutive nonphotochemical quenching (npq) - loses its physical meaning. Processes beyond photochemistry and regulatory npq should be identified and characterized by multifaceted studies, including ChlF. Such investigations may shed light on the putative roles of dissipation and other energy-consuming events in the stress physiology of photosynthetic machinery.
本文旨在开启关于信息内容、物理机制以及测量协议的讨论,以确定光合生物中吸收光能的分配情况。近期研究发现,除了开放和关闭状态外,光系统II(PSII)还存在一种光适应的电荷分离状态,并且叶绿素荧光诱导(ChlF)除了反映PSII的光化学活性外,还反映其反应中心复合物的结构动态,这促使人们重新审视这些问题。因此,无法通过传统的基于ChlF的协议来确定PSII的光化学量子产率。相应地,与之相互依存的量——所谓的非调节性组成型非光化学猝灭(npq)的量子产率——也失去了其物理意义。应该通过包括ChlF在内的多方面研究来识别和表征光化学及调节性npq之外的过程。此类研究可能会揭示光合机构应激生理学中能量耗散及其他耗能事件的假定作用。