Suppr超能文献

利用患者来源的培养系统对神经病变性贮积病进行建模。

Modeling neuronopathic storage diseases with patient-derived culture systems.

机构信息

Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel 24118, Germany.

Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

出版信息

Neurobiol Dis. 2019 Jul;127:147-162. doi: 10.1016/j.nbd.2019.01.018. Epub 2019 Feb 19.

Abstract

Lysosomes are organelles involved in the degradation and recycling of macromolecules, and play a critical role in sensing metabolic information in the cell. A class of rare metabolic diseases called lysosomal storage disorders (LSD) are characterized by lysosomal dysfunction and the accumulation of macromolecular substrates. The central nervous system appears to be particularly vulnerable to lysosomal dysfunction, since many LSDs are characterized by severe, widespread neurodegeneration with pediatric onset. Furthermore, variants in lysosomal genes are strongly associated with some common neurodegenerative disorders such as Parkinson's disease (PD). To better understand disease pathology and develop novel treatment strategies, it is critical to study the fundamental molecular disease mechanisms in the affected cell types that harbor endogenously expressed mutations. The discovery of methods for reprogramming of patient-derived somatic cells into induced pluripotent stem cells (iPSCs), and their differentiation into distinct neuronal and glial cell types, have provided novel opportunities to study mechanisms of lysosomal dysfunction within the relevant, vulnerable cell types. These models also expand our ability to develop and test novel therapeutic targets. We discuss recently developed methods for iPSC differentiation into distinct neuronal and glial cell types, while addressing the need for meticulous experimental techniques and parameters that are essential to accurately identify inherent cellular pathologies. iPSC models for neuronopathic LSDs and their relationship to sporadic age-related neurodegeneration are also discussed. These models should facilitate the discovery and development of personalized therapies in the future.

摘要

溶酶体是参与大分子降解和回收的细胞器,在细胞中感应代谢信息方面发挥着关键作用。一类称为溶酶体贮积症(LSD)的罕见代谢疾病的特征是溶酶体功能障碍和大分子底物的积累。中枢神经系统似乎特别容易受到溶酶体功能障碍的影响,因为许多 LSD 都表现为严重、广泛的神经退行性变,发病于儿童期。此外,溶酶体基因的变异与一些常见的神经退行性疾病(如帕金森病(PD))密切相关。为了更好地了解疾病病理学并开发新的治疗策略,研究携带内源性突变的受影响细胞类型中的基本分子疾病机制至关重要。利用患者来源的体细胞重编程为诱导多能干细胞(iPSC)的方法的发现,以及它们分化为不同的神经元和神经胶质细胞类型,为研究溶酶体功能障碍的机制提供了新的机会。这些模型还扩展了我们开发和测试新治疗靶点的能力。我们讨论了最近开发的用于将 iPSC 分化为不同神经元和神经胶质细胞类型的方法,同时解决了需要精心设计实验技术和参数的问题,这些技术和参数对于准确识别固有细胞病理学至关重要。神经元溶酶体贮积症的 iPSC 模型及其与散发性年龄相关性神经退行性变的关系也进行了讨论。这些模型应有助于未来发现和开发个性化治疗方法。

相似文献

1
Modeling neuronopathic storage diseases with patient-derived culture systems.
Neurobiol Dis. 2019 Jul;127:147-162. doi: 10.1016/j.nbd.2019.01.018. Epub 2019 Feb 19.
2
Induced pluripotent stem cell models of lysosomal storage disorders.
Dis Model Mech. 2017 Jun 1;10(6):691-704. doi: 10.1242/dmm.029009.
3
Mitochondrial Dysfunction and Neurodegeneration in Lysosomal Storage Disorders.
Trends Mol Med. 2017 Feb;23(2):116-134. doi: 10.1016/j.molmed.2016.12.003. Epub 2017 Jan 19.
4
Role of induced pluripotent stem cells in lysosomal storage diseases.
Mol Cell Neurosci. 2020 Oct;108:103540. doi: 10.1016/j.mcn.2020.103540. Epub 2020 Aug 21.
5
Mitochondria, lysosomes, and dysfunction: their meaning in neurodegeneration.
J Neurochem. 2018 Nov;147(3):291-309. doi: 10.1111/jnc.14471. Epub 2018 Aug 2.
6
Lysosomal storage diseases as disorders of autophagy.
Autophagy. 2008 Jan;4(1):113-4. doi: 10.4161/auto.5227. Epub 2007 Oct 30.
8
Delineating the Neuropathology of Lysosomal Storage Diseases Using Patient-Derived Induced Pluripotent Stem Cells.
Stem Cells Dev. 2022 May;31(9-10):221-238. doi: 10.1089/scd.2021.0304. Epub 2022 Apr 27.
10
Neurodegenerative lysosomal disorders: a continuum from development to late age.
Autophagy. 2008 Jul;4(5):590-9. doi: 10.4161/auto.6259. Epub 2008 May 12.

引用本文的文献

1
Lysosomal dysfunction and overload of nucleosides in thymidine phosphorylase deficiency of MNGIE.
J Transl Med. 2024 May 13;22(1):449. doi: 10.1186/s12967-024-05275-8.
3
Defective proteostasis in induced pluripotent stem cell models of frontotemporal lobar degeneration.
Transl Psychiatry. 2022 Dec 10;12(1):508. doi: 10.1038/s41398-022-02274-5.
4
Neuroinflammation in Gaucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson's disease.
Brain Res. 2022 Apr 1;1780:147798. doi: 10.1016/j.brainres.2022.147798. Epub 2022 Jan 19.
5
Rescue of α-synuclein aggregation in Parkinson's patient neurons by synergistic enhancement of ER proteostasis and protein trafficking.
Neuron. 2022 Feb 2;110(3):436-451.e11. doi: 10.1016/j.neuron.2021.10.032. Epub 2021 Nov 17.
6
Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement.
Front Mol Biosci. 2021 Sep 16;8:624988. doi: 10.3389/fmolb.2021.624988. eCollection 2021.
8
Detection of pathological alpha-synuclein aggregates in human iPSC-derived neurons and tissue.
STAR Protoc. 2021 Mar 6;2(1):100372. doi: 10.1016/j.xpro.2021.100372. eCollection 2021 Mar 19.
9
Analysis of lysosomal hydrolase trafficking and activity in human iPSC-derived neuronal models.
STAR Protoc. 2021 Feb 13;2(1):100340. doi: 10.1016/j.xpro.2021.100340. eCollection 2021 Mar 19.
10
Human iPSC-Based Models for the Development of Therapeutics Targeting Neurodegenerative Lysosomal Storage Diseases.
Front Mol Biosci. 2020 Sep 18;7:224. doi: 10.3389/fmolb.2020.00224. eCollection 2020.

本文引用的文献

1
CLN8 is an endoplasmic reticulum cargo receptor that regulates lysosome biogenesis.
Nat Cell Biol. 2018 Dec;20(12):1370-1377. doi: 10.1038/s41556-018-0228-7. Epub 2018 Nov 5.
2
Neural stem cells for disease modeling and evaluation of therapeutics for Tay-Sachs disease.
Orphanet J Rare Dis. 2018 Sep 17;13(1):152. doi: 10.1186/s13023-018-0886-3.
3
Amyloid-β fibrils assembled on ganglioside-enriched membranes contain both parallel β-sheets and turns.
J Biol Chem. 2018 Sep 7;293(36):14146-14154. doi: 10.1074/jbc.RA118.002787. Epub 2018 Jul 17.
7
Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson's disease.
Neurobiol Dis. 2019 Feb;122:72-82. doi: 10.1016/j.nbd.2018.03.008. Epub 2018 Mar 14.
8
Recent neuroimaging, neurophysiological, and neuropathological advances for the understanding of NPC.
F1000Res. 2018 Feb 15;7:194. doi: 10.12688/f1000research.12361.1. eCollection 2018.
10
Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.
J Lipid Res. 2018 Mar;59(3):550-563. doi: 10.1194/jlr.M081323. Epub 2018 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验