Suppr超能文献

一种实时检测睡眠纺锤波的深度学习方法。

A deep learning approach for real-time detection of sleep spindles.

机构信息

Department of Psychiatry, School of Medicine, New York University, New York, NY 10016, United States of America.

出版信息

J Neural Eng. 2019 Jun;16(3):036004. doi: 10.1088/1741-2552/ab0933. Epub 2019 Feb 21.

Abstract

OBJECTIVE

Sleep spindles have been implicated in memory consolidation and synaptic plasticity during NREM sleep. Detection accuracy and latency in automatic spindle detection are critical for real-time applications.

APPROACH

Here we propose a novel deep learning strategy (SpindleNet) to detect sleep spindles based on a single EEG channel. While the majority of spindle detection methods are used for off-line applications, our method is well suited for online applications.

MAIN RESULTS

Compared with other spindle detection methods, SpindleNet achieves superior detection accuracy and speed, as demonstrated in two publicly available expert-validated EEG sleep spindle datasets. Our real-time detection of spindle onset achieves detection latencies of 150-350 ms (~two-three spindle cycles) and retains excellent performance under low EEG sampling frequencies and low signal-to-noise ratios. SpindleNet has good generalization across different sleep datasets from various subject groups of different ages and species.

SIGNIFICANCE

SpindleNet is ultra-fast and scalable to multichannel EEG recordings, with an accuracy level comparable to human experts, making it appealing for long-term sleep monitoring and closed-loop neuroscience experiments.

摘要

目的

睡眠梭形波被认为与非快速眼动(NREM)睡眠期间的记忆巩固和突触可塑性有关。自动梭形波检测的准确性和潜伏期对于实时应用至关重要。

方法

在这里,我们提出了一种新的基于单个脑电图(EEG)通道的深度学习策略(SpindleNet)来检测睡眠梭形波。虽然大多数的梭形波检测方法都用于离线应用,但我们的方法非常适合在线应用。

主要结果

与其他梭形波检测方法相比,SpindleNet 在两个公开的经过专家验证的 EEG 睡眠梭形波数据集上实现了更高的检测准确性和速度。我们对梭形波起始的实时检测达到了 150-350ms 的检测潜伏期(~两个到三个梭形波周期),并且在低 EEG 采样频率和低信噪比下仍保持出色的性能。SpindleNet 在来自不同年龄和物种的不同受试者群体的不同睡眠数据集上具有良好的泛化能力。

意义

SpindleNet 非常快速且可扩展到多通道 EEG 记录,其准确性可与人类专家相媲美,因此非常适合长期睡眠监测和闭环神经科学实验。

相似文献

1
A deep learning approach for real-time detection of sleep spindles.一种实时检测睡眠纺锤波的深度学习方法。
J Neural Eng. 2019 Jun;16(3):036004. doi: 10.1088/1741-2552/ab0933. Epub 2019 Feb 21.
4
Sleep Spindle Detection Using RUSBoost and Synchrosqueezed Wavelet Transform.基于 RUSBoost 和同步挤压小波变换的睡眠纺锤波检测
IEEE Trans Neural Syst Rehabil Eng. 2020 Feb;28(2):390-398. doi: 10.1109/TNSRE.2020.2964597. Epub 2020 Jan 7.
5
A Residual Based Attention Model for EEG Based Sleep Staging.基于残差的 EEG 睡眠分期注意模型。
IEEE J Biomed Health Inform. 2020 Oct;24(10):2833-2843. doi: 10.1109/JBHI.2020.2978004. Epub 2020 Mar 3.

引用本文的文献

1
Networks through the lens of high-frequency oscillations.从高频振荡视角看网络
Front Netw Physiol. 2024 Nov 28;4:1462672. doi: 10.3389/fnetp.2024.1462672. eCollection 2024.
6
A personalized semi-automatic sleep spindle detection (PSASD) framework.个性化半自动睡眠纺锤波检测(PSASD)框架。
J Neurosci Methods. 2024 Jul;407:110064. doi: 10.1016/j.jneumeth.2024.110064. Epub 2024 Jan 30.

本文引用的文献

2
Differential roles of sleep spindles and sleep slow oscillations in memory consolidation.睡眠纺锤波和慢波在记忆巩固中的差异作用。
PLoS Comput Biol. 2018 Jul 9;14(7):e1006322. doi: 10.1371/journal.pcbi.1006322. eCollection 2018 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验