Department of Clinical Neurophysiology, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente & Medisch Spectrum Twente, Enschede, The Netherlands.
Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.
Sci Rep. 2018 Feb 15;8(1):3069. doi: 10.1038/s41598-018-21495-7.
We have excellent skills to extract sex from visual assessment of human faces, but assessing sex from human brain rhythms seems impossible. Using deep convolutional neural networks, with unique potential to find subtle differences in apparent similar patterns, we explore if brain rhythms from either sex contain sex specific information. Here we show, in a ground truth scenario, that a deep neural net can predict sex from scalp electroencephalograms with an accuracy of >80% (p < 10), revealing that brain rhythms are sex specific. Further, we extracted sex-specific features from the deep net filter layers, showing that fast beta activity (20-25 Hz) and its spatial distribution is a main distinctive attribute. This demonstrates the ability of deep nets to detect features in spatiotemporal data unnoticed by visual assessment, and to assist in knowledge discovery. We anticipate that this approach may also be successfully applied to other specialties where spatiotemporal data is abundant, including neurology, cardiology and neuropsychology.
我们拥有从人脸视觉评估中提取性别的出色技能,但从人类大脑节律评估性别似乎是不可能的。使用深度卷积神经网络,具有发现明显相似模式中细微差异的独特潜力,我们探索了来自任一种性别的脑节律是否包含性别特异性信息。在这里,我们在真实场景中表明,深度神经网络可以从头皮脑电图中以>80%的准确率预测性别(p<10),这表明大脑节律是具有性别特异性的。此外,我们从深度网络滤波器层中提取了性别特异性特征,表明快速β活动(20-25 Hz)及其空间分布是主要的区别特征。这证明了深度网络能够检测到视觉评估无法察觉的时空数据中的特征,并有助于知识发现。我们预计,这种方法也可以成功应用于其他时空数据丰富的专业领域,包括神经病学、心脏病学和神经心理学。