Suppr超能文献

斜栅扫描:一种具有可变能量层的离子剂量输送过程。

Oblique raster scanning: an ion dose delivery procedure with variable energy layers.

机构信息

TERA Foundation, Novara, Italy.

出版信息

Phys Med Biol. 2019 May 23;64(11):115003. doi: 10.1088/1361-6560/ab0920.

Abstract

In ion therapy accelerator complexes the dose is delivered 'actively' by subdividing the target in equal energy layers (EELs), which are scanned by a beam spot visiting in sequence the planned spots, previously defined by the treatment planning system. Synchrotrons-based complexes have three problems: (i) the switching from the energy needed to scan one Equal Energy Layer to the next takes time, an effect that is more relevant for the very short treatment times now often required; (ii) the unavoidable 'ripples' of the quadrupoles and bending magnets currents produce large erratic time variations of the extracted current complicating the dose delivery; (iii) in case of superconducting synchrotrons, it is difficult to rapidly change the magnetic field because of the power dumped in the cold masses. These problems are mitigated in the proposed Qblique Raster Scanning procedure, in which the magnet currents of the beamlines vary in synchrony and a beam spot of continuously varying energy moves at a constant velocity in the beam direction scanning layers that are not perpendicular to it. In this paper it is shown that, even for a 13.5 s irradiation of a 0.5 l target, the B-field rates can be as low as dB/dt  =  0.1 T s and that the best procedures to follow 0.5 l moving targets, which combines 3D feedback systems with a five-fold rescanning, can be applied by accelerating in the synchrotron about 10 carbon ions. ORS can be used in combination with respiratory gating,and is advantageous also for (synchro)cyclotrons-based centres: the variable energy beam can be produced with a slowly rotating absorber and a superconducting energy acceptance beamline/gantry system (with ΔE/E  =  ±1.5%) can substitute the more expensive beam transport systems which have ten times larger energy acceptance (ΔE/E  ⩾  ±15%).

摘要

在离子治疗加速器综合体中,通过将目标分成相等能量层(EEL)来“主动”递送电剂量,然后通过光束点依次扫描预先由治疗计划系统定义的计划点。基于同步加速器的综合体有三个问题:(i)从扫描一个 EEL 所需的能量切换到下一个 EEL 需要时间,对于现在通常需要的非常短的治疗时间来说,这种效应更为重要;(ii)四极和弯曲磁铁电流不可避免的“波纹”会导致提取电流的大的不规则时间变化,从而使剂量传递复杂化;(iii)在超导同步加速器的情况下,由于冷质量中消耗的功率,很难快速改变磁场。这些问题在提出的 Qblique 光栅扫描过程中得到缓解,其中光束线的磁铁电流同步变化,并且具有连续变化能量的光束点以恒定速度在光束方向上移动,扫描与它不垂直的层。在本文中,即使对于 0.5 l 目标的 13.5 s 照射,B 场速率也可以低至 dB/dt = 0.1 T s,并且可以应用最好的程序来跟踪 0.5 l 移动目标,该程序将 3D 反馈系统与五倍重扫相结合,可以在同步加速器中加速约 10 个碳离子。ORS 可以与呼吸门控结合使用,并且对于基于(同步)回旋加速器的中心也具有优势:可以使用缓慢旋转的吸收器和超导能量接收光束线/龙门系统来产生可变能量光束(ΔE/E = ±1.5%),而不是更昂贵的束传输系统,后者的能量接收(ΔE/E ⩾ ±15%)大十倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验