Suppr超能文献

生活方式改变文档的自然语言处理。

Natural language processing of lifestyle modification documentation.

机构信息

University of North Carolina at Chapel Hill, USA.

University of Wisconsin-Madison, USA.

出版信息

Health Informatics J. 2020 Mar;26(1):388-405. doi: 10.1177/1460458218824742. Epub 2019 Feb 22.

Abstract

Lifestyle modification, including diet, exercise, and tobacco cessation, is the first-line treatment of many disorders including hypertension, obesity, and diabetes. Lifestyle modification data are not easily retrieved or used in research due to their textual nature. This study addresses this knowledge gap using natural language processing to automatically identify lifestyle modification documentation from electronic health records. Electronic health record notes from hypertension patients were analyzed using an open-source natural language processing tool to retrieve assessment and advice regarding lifestyle modification. These data were classified as lifestyle modification assessment or advice and mapped to a coded standard ontology. Combined lifestyle modification (advice and assessment) recall was 99.27 percent, precision 94.44 percent, and correct classification 88.15 percent. Through extraction and transformation of narrative lifestyle modification data to coded data, this critical information can be used in research, metric development, and quality improvement efforts regarding care delivery for multiple medical conditions that benefit from lifestyle modification.

摘要

生活方式的改变,包括饮食、运动和戒烟,是许多疾病(包括高血压、肥胖症和糖尿病)的一线治疗方法。由于生活方式改变数据的文本性质,它们在研究中不容易被检索或使用。本研究使用自然语言处理来自动识别电子健康记录中的生活方式改变文档,从而解决了这一知识空白。利用开源自然语言处理工具分析高血压患者的电子健康记录笔记,以检索关于生活方式改变的评估和建议。这些数据被分类为生活方式改变评估或建议,并映射到编码标准本体上。综合生活方式改变(建议和评估)召回率为 99.27%,精度为 94.44%,正确分类率为 88.15%。通过提取和转换叙述性的生活方式改变数据为编码数据,可以将这些关键信息用于与生活方式改变受益的多种医疗条件的护理提供相关的研究、指标制定和质量改进工作中。

相似文献

1
Natural language processing of lifestyle modification documentation.
Health Informatics J. 2020 Mar;26(1):388-405. doi: 10.1177/1460458218824742. Epub 2019 Feb 22.
3
Automatic extraction and assessment of lifestyle exposures for Alzheimer's disease using natural language processing.
Int J Med Inform. 2019 Oct;130:103943. doi: 10.1016/j.ijmedinf.2019.08.003. Epub 2019 Aug 6.
4
Facilitating clinical research through automation: Combining optical character recognition with natural language processing.
Clin Trials. 2022 Oct;19(5):504-511. doi: 10.1177/17407745221093621. Epub 2022 May 24.
6
Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
Arch Phys Med Rehabil. 2020 Oct;101(10):1739-1746. doi: 10.1016/j.apmr.2020.04.024. Epub 2020 May 21.
9
Natural language processing improves identification of colorectal cancer testing in the electronic medical record.
Med Decis Making. 2012 Jan-Feb;32(1):188-97. doi: 10.1177/0272989X11400418. Epub 2011 Mar 10.

引用本文的文献

1
Phenotyping to predict 12-month health outcomes of older general medicine patients.
Aging Clin Exp Res. 2025 Feb 22;37(1):42. doi: 10.1007/s40520-024-02924-2.
2
Multimodal Data Hybrid Fusion and Natural Language Processing for Clinical Prediction Models.
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:191-200. eCollection 2024.
3
Social and Behavioral Determinants of Health in the Era of Artificial Intelligence with Electronic Health Records: A Scoping Review.
Health Data Sci. 2021 Aug 24;2021:9759016. doi: 10.34133/2021/9759016. eCollection 2021.
5
Leveraging electronic health record data for endometriosis research.
Front Digit Health. 2023 Jun 5;5:1150687. doi: 10.3389/fdgth.2023.1150687. eCollection 2023.
6
Automatic extraction of social determinants of health from medical notes of chronic lower back pain patients.
J Am Med Inform Assoc. 2023 Jul 19;30(8):1438-1447. doi: 10.1093/jamia/ocad054.
7
Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition.
J Am Med Inform Assoc. 2023 Jul 19;30(8):1379-1388. doi: 10.1093/jamia/ocad046.
8
Design considerations for a hierarchical semantic compositional framework for medical natural language understanding.
PLoS One. 2023 Mar 16;18(3):e0282882. doi: 10.1371/journal.pone.0282882. eCollection 2023.
9
Play the Pain: A Digital Strategy for Play-Oriented Research and Action.
Front Psychiatry. 2021 Dec 15;12:746477. doi: 10.3389/fpsyt.2021.746477. eCollection 2021.

本文引用的文献

1
3
Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association.
Circulation. 2018 Mar 20;137(12):e67-e492. doi: 10.1161/CIR.0000000000000558. Epub 2018 Jan 31.
4
Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States.
CA Cancer J Clin. 2018 Jan;68(1):31-54. doi: 10.3322/caac.21440. Epub 2017 Nov 21.
7
Incident Cardiovascular Disease Among Adults With Blood Pressure <140/90 mm Hg.
Circulation. 2017 Aug 29;136(9):798-812. doi: 10.1161/CIRCULATIONAHA.117.027362. Epub 2017 Jun 20.
8
Dietary Fats and Cardiovascular Disease: A Presidential Advisory From the American Heart Association.
Circulation. 2017 Jul 18;136(3):e1-e23. doi: 10.1161/CIR.0000000000000510. Epub 2017 Jun 15.
9
Exercise Is Medicine: Proof . . . and Possibilities?
JACC Cardiovasc Imaging. 2017 Dec;10(12):1469-1471. doi: 10.1016/j.jcmg.2016.12.031. Epub 2017 May 17.
10
Hypertension update, JNC8 and beyond.
Curr Opin Pharmacol. 2017 Apr;33:41-46. doi: 10.1016/j.coph.2017.03.004. Epub 2017 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验