Medical and Imaging Informatics (MII) Group, Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California, United States of America.
Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America.
PLoS One. 2023 Mar 16;18(3):e0282882. doi: 10.1371/journal.pone.0282882. eCollection 2023.
Medical natural language processing (NLP) systems are a key enabling technology for transforming Big Data from clinical report repositories to information used to support disease models and validate intervention methods. However, current medical NLP systems fall considerably short when faced with the task of logically interpreting clinical text. In this paper, we describe a framework inspired by mechanisms of human cognition in an attempt to jump the NLP performance curve. The design centers on a hierarchical semantic compositional model (HSCM), which provides an internal substrate for guiding the interpretation process. The paper describes insights from four key cognitive aspects: semantic memory, semantic composition, semantic activation, and hierarchical predictive coding. We discuss the design of a generative semantic model and an associated semantic parser used to transform a free-text sentence into a logical representation of its meaning. The paper discusses supportive and antagonistic arguments for the key features of the architecture as a long-term foundational framework.
医学自然语言处理(NLP)系统是将临床报告库中的大数据转化为支持疾病模型和验证干预方法的信息的关键使能技术。然而,当前的医学 NLP 系统在逻辑解释临床文本方面存在很大的不足。在本文中,我们描述了一个受人类认知机制启发的框架,试图跨越 NLP 性能曲线。该设计以分层语义组合模型(HSCM)为中心,为解释过程提供了内部基础。本文从四个关键认知方面描述了一些见解:语义记忆、语义组合、语义激活和分层预测编码。我们讨论了生成语义模型和相关语义解析器的设计,用于将自由文本句子转换为其意义的逻辑表示。本文讨论了该架构的关键特征作为长期基础框架的支持和反对论据。