Division of General Internal Medicine and Public Health, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee (JCD, NNC, JFP, NBP)
Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee (JCD, JFP, RAM, LB)
Med Decis Making. 2012 Jan-Feb;32(1):188-97. doi: 10.1177/0272989X11400418. Epub 2011 Mar 10.
Difficulty identifying patients in need of colorectal cancer (CRC) screening contributes to low screening rates.
To use Electronic Health Record (EHR) data to identify patients with prior CRC testing.
A clinical natural language processing (NLP) system was modified to identify 4 CRC tests (colonoscopy, flexible sigmoidoscopy, fecal occult blood testing, and double contrast barium enema) within electronic clinical documentation. Text phrases in clinical notes referencing CRC tests were interpreted by the system to determine whether testing was planned or completed and to estimate the date of completed tests.
Large academic medical center.
200 patients ≥ 50 years old who had completed ≥ 2 non-acute primary care visits within a 1-year period.
Recall and precision of the NLP system, billing records, and human chart review were compared to a reference standard of human review of all available information sources.
For identification of all CRC tests, recall and precision were as follows: NLP system (recall 93%, precision 94%), chart review (74%, 98%), and billing records review (44%, 83%). Recall and precision for identification of patients in need of screening were: NLP system (recall 95%, precision 88%), chart review (99%, 82%), and billing records (99%, 67%).
Small sample size and requirement for a robust EHR.
Applying NLP to EHR records detected more CRC tests than either manual chart review or billing records review alone. NLP had better precision but marginally lower recall to identify patients who were due for CRC screening than billing record review.
难以识别需要结直肠癌(CRC)筛查的患者是导致筛查率低的原因之一。
利用电子健康记录(EHR)数据识别既往接受过 CRC 检测的患者。
修改了临床自然语言处理(NLP)系统,以在电子临床文档中识别 4 种 CRC 检测(结肠镜检查、乙状结肠镜检查、粪便潜血检测和双重对比钡灌肠)。系统通过解释临床记录中提及 CRC 检测的文本短语,确定检测是计划进行还是已完成,并估计已完成检测的日期。
大型学术医疗中心。
200 名年龄≥50 岁的患者,在 1 年内完成了≥2 次非急性初级保健就诊。
将 NLP 系统、计费记录和人工图表审查的召回率和精确度与人工审查所有可用信息源的参考标准进行比较。
对于所有 CRC 检测的识别,NLP 系统的召回率和精确度如下:NLP 系统(召回率 93%,精确度 94%)、图表审查(74%,98%)和计费记录审查(44%,83%)。用于识别需要筛查的患者的召回率和精确度如下:NLP 系统(召回率 95%,精确度 88%)、图表审查(99%,82%)和计费记录(99%,67%)。
样本量小且需要强大的 EHR。
将 NLP 应用于 EHR 记录可以比单独进行手动图表审查或计费记录审查检测到更多的 CRC 检测。与计费记录审查相比,NLP 用于识别需要 CRC 筛查的患者具有更高的精确度,但召回率略低。