Suppr超能文献

大猿和人类股骨头的小梁结构。

Trabecular architecture of the great ape and human femoral head.

机构信息

Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK.

Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.

出版信息

J Anat. 2019 May;234(5):679-693. doi: 10.1111/joa.12957. Epub 2019 Feb 21.

Abstract

Studies of femoral trabecular structure have shown that the orientation and volume of bone are associated with variation in loading and could be informative about individual joint positioning during locomotion. In this study, we analyse for the first time trabecular bone patterns throughout the femoral head using a whole-epiphysis approach to investigate how potential trabecular variation in humans and great apes relates to differences in locomotor modes. Trabecular architecture was analysed using microCT scans of Pan troglodytes (n = 20), Gorilla gorilla (n = 14), Pongo sp. (n = 5) and Homo sapiens (n = 12) in medtool 4.1. Our results revealed differences in bone volume fraction (BV/TV) distribution patterns, as well as overall trabecular parameters of the femoral head between great apes and humans. Pan and Gorilla showed two regions of high BV/TV in the femoral head, consistent with hip posture and loading during two discrete locomotor modes: knuckle-walking and climbing. Most Pongo specimens also displayed two regions of high BV/TV, but these regions were less discrete and there was more variability across the sample. In contrast, Homo showed only one main region of high BV/TV in the femoral head and had the lowest BV/TV, as well as the most anisotropic trabeculae. The Homo trabecular structure is consistent with stereotypical loading with a more extended hip compared with great apes, which is characteristic of modern human bipedalism. Our results suggest that holistic evaluations of femoral head trabecular architecture can reveal previously undetected patterns linked to locomotor behaviour in extant apes and can provide further insight into hip joint loading in fossil hominins and other primates.

摘要

对股骨小梁结构的研究表明,骨的方向和体积与负荷的变化有关,并且可以提供关于运动过程中个体关节位置的信息。在这项研究中,我们首次使用整个骺的方法分析了整个股骨头的小梁骨模式,以研究人类和大猿类潜在的小梁变化与运动模式的差异有何关系。使用 medtool 4.1 对 Pan troglodytes(n=20)、Gorilla gorilla(n=14)、Pongo sp.(n=5)和 Homo sapiens(n=12)的股骨进行了 microCT 扫描,分析了小梁结构。我们的结果显示,在大猿类和人类之间,骨体积分数(BV/TV)分布模式以及股骨头的总体小梁参数存在差异。Pan 和 Gorilla 在股骨头显示出两个高 BV/TV 区域,这与髋关节在两种不同的运动模式(指节行走和攀爬)中的姿势和负荷一致。大多数 Pongo 标本也显示出两个高 BV/TV 区域,但这些区域不太离散,样本之间的变异性更大。相比之下,Homo 仅在股骨头显示出一个主要的高 BV/TV 区域,并且具有最低的 BV/TV,以及最各向异性的小梁。与大猿类相比,Homo 的小梁结构与髋关节伸展程度更高的典型负荷一致,这是现代人类两足行走的特征。我们的研究结果表明,对头骨小梁结构的整体评估可以揭示与现生猿类运动行为相关的以前未被发现的模式,并可以进一步深入了解化石人类和其他灵长类动物髋关节的负荷情况。

相似文献

1
Trabecular architecture of the great ape and human femoral head.
J Anat. 2019 May;234(5):679-693. doi: 10.1111/joa.12957. Epub 2019 Feb 21.
2
Trabecular architecture of the distal femur in extant hominids.
J Anat. 2024 Jul;245(1):156-180. doi: 10.1111/joa.14026. Epub 2024 Feb 21.
3
Metacarpal trabecular bone varies with distinct hand-positions used in hominid locomotion.
J Anat. 2019 Jul;235(1):45-66. doi: 10.1111/joa.12966. Epub 2019 May 17.
4
Trabecular Bone Structure in the Distal Femur of Humans, Apes, and Baboons.
Anat Rec (Hoboken). 2020 Jan;303(1):129-149. doi: 10.1002/ar.24050. Epub 2018 Dec 27.
5
First metatarsal trabecular bone structure in extant hominoids and Swartkrans hominins.
J Hum Evol. 2019 Jun;131:1-21. doi: 10.1016/j.jhevol.2019.03.003. Epub 2019 Apr 5.
6
Trabecular bone patterning in the hominoid distal femur.
PeerJ. 2018 Jul 5;6:e5156. doi: 10.7717/peerj.5156. eCollection 2018.
7
The deep trabecular structure of first metacarpals in extant hominids.
Am J Biol Anthropol. 2024 Mar;183(3):e24695. doi: 10.1002/ajpa.24695. Epub 2023 Feb 7.
10
Trabecular variation in the first metacarpal and manipulation in hominids.
Am J Phys Anthropol. 2020 Feb;171(2):219-241. doi: 10.1002/ajpa.23974. Epub 2019 Nov 24.

引用本文的文献

2
Trabecular Architecture of the Proximal Tibia in Extant Hominids.
Am J Biol Anthropol. 2025 Jul;187(3):e70084. doi: 10.1002/ajpa.70084.
3
Locomotor signals in the trabecular structure of the hominoid clavicle.
J Anat. 2025 Aug;247(2):284-303. doi: 10.1111/joa.14243. Epub 2025 Mar 9.
4
Trabecular architecture of the distal femur in extant hominids.
J Anat. 2024 Jul;245(1):156-180. doi: 10.1111/joa.14026. Epub 2024 Feb 21.
5
A computational framework for canonical holistic morphometric analysis of trabecular bone.
Sci Rep. 2022 Mar 25;12(1):5187. doi: 10.1038/s41598-022-09063-6.
7
Cortical and trabecular bone structure of the hominoid capitate.
J Anat. 2021 Aug;239(2):351-373. doi: 10.1111/joa.13437. Epub 2021 May 4.
8
Novel strategies for the characterization of cancellous bone morphology: Virtual isolation and analysis.
Am J Phys Anthropol. 2021 Aug;175(4):920-930. doi: 10.1002/ajpa.24272. Epub 2021 Apr 3.
9
First evidence of convergent lifestyle signal in reptile skull roof microanatomy.
BMC Biol. 2020 Nov 30;18(1):185. doi: 10.1186/s12915-020-00908-y.
10
Evidence for habitual climbing in a Pleistocene hominin in South Africa.
Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8416-8423. doi: 10.1073/pnas.1914481117. Epub 2020 Mar 30.

本文引用的文献

1
Positional behavior of female bornean orangutans (Pongo pygmaeus).
Am J Primatol. 1987;12(1):71-90. doi: 10.1002/ajp.1350120104.
2
Trabecular bone patterning in the hominoid distal femur.
PeerJ. 2018 Jul 5;6:e5156. doi: 10.7717/peerj.5156. eCollection 2018.
3
Human-like hip joint loading in Australopithecus africanus and Paranthropus robustus.
J Hum Evol. 2018 Aug;121:12-24. doi: 10.1016/j.jhevol.2018.03.008. Epub 2018 Apr 27.
4
Systemic patterns of trabecular bone across the human and chimpanzee skeleton.
J Anat. 2018 Apr;232(4):641-656. doi: 10.1111/joa.12776. Epub 2018 Jan 18.
5
Great ape walking kinematics: Implications for hominoid evolution.
Am J Phys Anthropol. 2018 May;166(1):43-55. doi: 10.1002/ajpa.23397. Epub 2018 Jan 4.
7
The evolution of vertical climbing in primates: evidence from reaction forces.
J Exp Biol. 2017 Sep 1;220(Pt 17):3039-3052. doi: 10.1242/jeb.157628. Epub 2017 Jun 15.
8
Trabecular and cortical bone structure of the talus and distal tibia in Pan and Homo.
Am J Phys Anthropol. 2017 Aug;163(4):784-805. doi: 10.1002/ajpa.23249. Epub 2017 May 24.
9
Trabecular mapping: Leveraging geometric morphometrics for analyses of trabecular structure.
Am J Phys Anthropol. 2017 Jul;163(3):553-569. doi: 10.1002/ajpa.23231. Epub 2017 Apr 22.
10
Low trabecular bone density in recent sedentary modern humans.
Am J Phys Anthropol. 2017 Mar;162(3):550-560. doi: 10.1002/ajpa.23138. Epub 2017 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验