Translational and Molecular Imaging Institute, Icahn School of Medicine, Mount Sinai Medical Center, New York, New York.
Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
Hum Brain Mapp. 2019 Jun 1;40(8):2546-2555. doi: 10.1002/hbm.24543. Epub 2019 Feb 21.
Non-manifesting carriers (NMC) of the G2019S mutation in the LRRK2 gene represent an "at risk" group for future development of Parkinson's disease (PD) and have demonstrated task related fMRI changes. However, resting-state networks have received less research focus, thus this study aimed to assess the integrity of the motor, default mode (DMN), salience (SAL), and dorsal attention (DAN) networks among this unique population by using two different connectivity measures: interregional functional connectivity analysis and Dependency network analysis (D NA). Machine learning classification methods were used to distinguish connectivity between the two groups of participants. Forty-four NMC and 41 non-manifesting non-carriers (NMNC) participated in this study; while no behavioral differences on standard questionnaires could be detected, NMC demonstrated lower connectivity measures in the DMN, SAL, and DAN compared to NMNC but not in the motor network. Significant correlations between NMC connectivity measures in the SAL and attention were identified. Machine learning classification separated NMC from NMNC with an accuracy rate above 0.8. Reduced integrity of non-motor networks was detected among NMC of the G2019S mutation in the LRRK2 gene prior to identifiable changes in connectivity of the motor network, indicating significant non-motor cerebral changes among populations "at risk" for future development of PD.
LRRK2 基因 G2019S 突变的非表现型携带者(NMC)代表未来发生帕金森病(PD)的“高危”群体,并且已经证明存在与任务相关的 fMRI 变化。然而,静息态网络受到的研究关注较少,因此,本研究旨在通过两种不同的连接测量方法:区域间功能连接分析和依赖网络分析(D NA),评估该独特人群的运动、默认模式(DMN)、突显(SAL)和背侧注意(DAN)网络的完整性。使用机器学习分类方法来区分两组参与者之间的连接。44 名 NMC 和 41 名非表现型非携带者(NMNC)参加了这项研究;虽然在标准问卷上没有检测到行为差异,但与 NMNC 相比,NMC 在 DMN、SAL 和 DAN 中的连接测量值较低,但在运动网络中没有差异。还确定了 NMC 在 SAL 和注意力中的连接测量值之间的显著相关性。机器学习分类以高于 0.8 的准确率将 NMC 与 NMNC 分开。在运动网络的连接发生可识别变化之前,LRRK2 基因 G2019S 突变的 NMC 中非运动网络的完整性降低,表明未来发生 PD 的“高危”人群中存在明显的非运动性大脑变化。