Suppr超能文献

预测分娩引产成功的模型:系统评价。

Prediction models for determining the success of labor induction: A systematic review.

机构信息

University of Toronto, Toronto, ON, Canada.

Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Mount Sinai Hospital, Toronto, ON, Canada.

出版信息

Acta Obstet Gynecol Scand. 2019 Sep;98(9):1100-1112. doi: 10.1111/aogs.13589. Epub 2019 Mar 25.

Abstract

INTRODUCTION

The purpose of this study was to systematically identify and compare clinical models using universally accessible clinical and demographic factors that were derived and/or validated to predict the success of labor induction with a view to making recommendations for practice.

MATERIAL AND METHODS

MEDLINE, Embase, www.clinicaltrials.gov, and PubMed (for non-MEDLINE and studies in-progress) were searched from inception to November 2017. Only studies that derived and/or validated clinical prediction models using variables obtained through antenatal history and digital cervical examination were included. Two reviewers independently screened titles and abstracts and extracted data from eligible studies into a standardized form. Extracted data included: participant characteristics, sample size, variables considered and included, endpoint definitions, study design and model performance. The Prediction Study Risk of Bias Assessment Tool (PROBAST) was used to appraise included studies. In view of clinical and methodologic heterogeneity between studies, only descriptive analysis was possible. The protocol was registered with the PROSPERO International prospective register of systematic reviews [CRD42017081548].

RESULTS

The search identified 16 studies describing 14 prediction models derived between 1966 and 2018. Models varied and demonstrated major limitations with regard to methodology, scope and performance. Of the derived models, six were internally validated and three were externally validated. Performance was most commonly measured using the area under the receiver operator characteristic curve, which ranged from 0.68 to 0.79, 0.67 to 0.77 and 0.61 to 0.73 for derived, internally validated and externally validated models, respectively. The risk-of-bias of included studies ranged from some studies fulfilling only 36% and some others fulfilling 86% of eligible PROBAST items.

CONCLUSIONS

No published model can be recommended for use at the bedside to determine the success of vaginal birth after labor induction. Based on the limitations of included models, a list of recommendations for improving model performance and utilization is provided, as well as measures for encouraging appropriate use of prediction models. The attitudes of women and care providers, and the clinical and resource implications must be explored prior to recommending the use of prediction models for determining the success of labor induction.

摘要

简介

本研究的目的是系统地识别和比较使用普遍可获得的临床和人口统计学因素来预测引产成功的临床模型,以期为实践提供建议。

材料和方法

从建库到 2017 年 11 月,我们检索了 MEDLINE、Embase、www.clinicaltrials.gov 和 PubMed(用于非 MEDLINE 和正在进行的研究)。仅纳入使用产前史和数字宫颈检查获得的变量来推导和/或验证临床预测模型的研究。两位评审员独立筛选标题和摘要,并将合格研究中的数据提取到标准化表格中。提取的数据包括:参与者特征、样本量、考虑和纳入的变量、终点定义、研究设计和模型性能。使用预测研究风险偏倚评估工具(PROBAST)评估纳入的研究。鉴于研究之间存在临床和方法学异质性,仅进行描述性分析。该方案已在 PROSPERO 国际前瞻性系统评价注册中心(CRD42017081548)进行了注册。

结果

搜索共确定了 16 项描述 1966 年至 2018 年期间推导的 14 个预测模型的研究。这些模型存在差异,并且在方法学、范围和性能方面存在重大局限性。在推导的模型中,有 6 个进行了内部验证,有 3 个进行了外部验证。性能最常用受试者工作特征曲线下面积来衡量,推导模型、内部验证模型和外部验证模型的 AUC 分别为 0.68 至 0.79、0.67 至 0.77 和 0.61 至 0.73。纳入研究的偏倚风险范围从一些研究仅满足 36%的合格 PROBAST 项目到另一些研究满足 86%不等。

结论

目前没有可以推荐用于确定引产成功的床边使用的模型。基于纳入模型的局限性,提供了一系列提高模型性能和利用的建议,以及鼓励适当使用预测模型的措施。在推荐使用预测模型来确定引产的成功之前,必须探讨女性和护理提供者的态度以及临床和资源的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验