Suppr超能文献

预测引产分娩后阴道分娩可能性的模型的推导和验证。

Derivation and validation of a model predicting the likelihood of vaginal birth following labour induction.

机构信息

Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynaecology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada.

Faculty of Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

BMC Pregnancy Childbirth. 2019 Apr 16;19(1):130. doi: 10.1186/s12884-019-2232-8.

Abstract

BACKGROUND

There is high-quality evidence supporting induction of labour (IOL) for a number of maternal and fetal indications. However, one fifth of inductions fail to result in vaginal births, requiring cesarean deliveries. This has negative clinical, emotional and resource implications. The importance of predicting the success of labour induction to enable shared decision-making has been recognized, but existing models are limited in scope and generalizability. Our objective was to derive and internally validate a clinical prediction model that uses variables readily accessible through maternal demographic data, antenatal history, and cervical examination to predict the likelihood of vaginal birth following IOL.

METHODS

Data was extracted from electronic medical records of consecutive pregnant women who were induced between April and December 2016, at Mount Sinai Hospital, Toronto, Canada. A multivariable logistic regression model was developed using 16 readily accessible variables identified through literature review and expert opinion, as predictors of vaginal birth after IOL. The final model was internally validated using 10-fold cross-validation.

RESULTS

Of the 1123 cases of IOL, 290 (25.8%) resulted in a cesarean delivery. The multivariable logistic regression model found maternal age, parity, pre-pregnancy body mass index and weight, weight at delivery, and cervical dilation at time of induction as significant predictors of vaginal delivery following IOL. The prediction model was well calibrated (Hosmer-Lemeshow χ2 = 5.02, p = 0.76) and demonstrated good discriminatory ability (area under the receiver operating characteristic (AUROC) curve, 0.81 (95% CI 0.78 to 0.83)). Finally, the model showed good internal validity [AUROC 0.77 (95% CI 0.73 to 0.82)].

CONCLUSIONS

We have derived and internally validated a well-performing clinical prediction model for IOL in a large and diverse population using variables readily accessible through maternal demographic data, antenatal history, and cervical examination. Once prospectively validated in diverse settings, and if shown to be acceptable to pregnant women and healthcare providers as well as clinically and cost-effective, this model has potential for widespread use in clinical practice and research for enhancing patient autonomy, improving induction outcomes, and optimizing allocation of resources.

摘要

背景

有高质量的证据支持引产(IOL)用于多种母婴指征。然而,五分之一的引产未能导致阴道分娩,需要剖宫产。这具有负面的临床、情感和资源影响。预测引产成功以便进行共同决策的重要性已得到认可,但现有的模型在范围和通用性上存在局限性。我们的目的是开发并内部验证一个使用通过产妇人口统计学数据、产前史和宫颈检查即可获得的变量来预测 IOL 后阴道分娩可能性的临床预测模型。

方法

从 2016 年 4 月至 12 月在加拿大多伦多西奈山医院连续接受诱导分娩的孕妇的电子病历中提取数据。通过文献回顾和专家意见确定了 16 个易于获得的变量,将其作为 IOL 后阴道分娩的预测因子,建立多变量逻辑回归模型。使用 10 倍交叉验证对最终模型进行内部验证。

结果

在 1123 例 IOL 中,有 290 例(25.8%)行剖宫产术。多变量逻辑回归模型发现产妇年龄、产次、孕前体重指数和体重、分娩时体重以及诱导时宫颈扩张是 IOL 后阴道分娩的重要预测因子。预测模型具有良好的校准度(Hosmer-Lemeshow χ2=5.02,p=0.76),且具有良好的区分能力(受试者工作特征曲线下面积,0.81(95%CI 0.78 至 0.83))。最后,该模型显示出良好的内部有效性[AUROC 0.77(95%CI 0.73 至 0.82)]。

结论

我们使用通过产妇人口统计学数据、产前史和宫颈检查即可获得的变量,为一个大型、多样化的人群开发并内部验证了一个性能良好的 IOL 临床预测模型。如果该模型在不同环境中得到前瞻性验证,并且被孕妇、医疗保健提供者认为是可以接受的,并且具有临床和成本效益,那么该模型有可能在临床实践和研究中得到广泛应用,以增强患者自主性、改善引产结局,并优化资源分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a19/6469110/65b2c2034280/12884_2019_2232_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验