IEEE Trans Biomed Eng. 2019 Nov;66(11):3098-3104. doi: 10.1109/TBME.2019.2900415. Epub 2019 Feb 19.
Force myography (FMG), which measures the surface pressure profile exerted by contracting muscles, has been proposed as an alternative to electromyography (EMG) for human-machine interfaces. Although FMG pattern recognition-based control systems have yielded higher offline classification accuracy, comparatively few works have examined the usability of FMG for real-time control. In this work, we conduct a comprehensive comparison of EMG- and FMG-based schemes using both classification and regression controllers.
A total of 20 participants performed a two-degree-of-freedom Fitts' Law-style virtual target acquisition task using both FMG- and EMG-based classification and regression control schemes. Performance was evaluated based on the standard Fitts' law testing metrics throughput, path efficiency, average speed, number of timeouts, overshoot, stopping distance, and simultaneity.
The FMG-based classification system significantly outperformed the EMG-based classification system in both throughput (0.902 ± 0.270) versus (0.751 ± 0.309), (ρ < 0.001) and path efficiency (87.2 ± 8.7) versus (83.2 ± 7.8), (ρ < 0.001). Similarly, FMG-based regression significantly outperformed EMG-based regression in throughput (0.871 ± 0.2) versus (0.69 ± 0.3), (ρ < 0.001) and path efficiency (64.8 ± 5.3) versus (58.8 ± 7.1), (ρ < 0.001).
The FMG-based schemes outperformed the EMG-based schemes regardless of which controller was used. This provides further evidence for FMG as a viable alternative to EMG for human-machine interfaces.
This work describes a comprehensive evaluation of the online usability of FMG- and EMG-based control using both sequential classification and simultaneous regression control.
力肌电图(FMG)通过测量收缩肌肉施加的表面压力分布来评估肌肉力量,它被提议作为肌电图(EMG)的替代方法,用于人机接口。虽然基于 FMG 模式识别的控制系统在线下的分类准确率更高,但相对较少的工作研究了 FMG 在实时控制中的可用性。在这项工作中,我们使用分类和回归控制器对基于 EMG 和 FMG 的方案进行了全面比较。
总共 20 名参与者使用基于 FMG 和 EMG 的分类和回归控制方案完成了一个两自由度 Fitts 法则风格的虚拟目标采集任务。性能评估基于标准 Fitts 法则测试指标,包括吞吐量、路径效率、平均速度、超时次数、超调量、停止距离和同时性。
基于 FMG 的分类系统在吞吐量(0.902±0.270 对 0.751±0.309)和路径效率(87.2±8.7 对 83.2±7.8)方面均显著优于基于 EMG 的分类系统(ρ<0.001)。同样,基于 FMG 的回归在吞吐量(0.871±0.2 对 0.69±0.3)和路径效率(64.8±5.3 对 58.8±7.1)方面均显著优于基于 EMG 的回归(ρ<0.001)。
无论使用哪种控制器,基于 FMG 的方案都优于基于 EMG 的方案。这为 FMG 作为 EMG 的替代方案用于人机接口提供了进一步的证据。
这项工作描述了对基于 FMG 和 EMG 的控制的在线可用性的全面评估,使用了顺序分类和同时回归控制。