Suppr超能文献

提高肌电假手在手臂位置改变时人机交互控制的鲁棒性。

Improving the Robustness of Human-Machine Interactive Control for Myoelectric Prosthetic Hand During Arm Position Changing.

作者信息

Ke Ang, Huang Jian, Wang Jing, He Jiping

机构信息

Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China.

Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.

出版信息

Front Neurorobot. 2022 Jun 7;16:853773. doi: 10.3389/fnbot.2022.853773. eCollection 2022.

Abstract

Robust classification of natural hand grasp type based on electromyography (EMG) still has some shortcomings in the practical prosthetic hand control, owing to the influence of dynamic arm position changing during hand actions. This study provided a framework for robust hand grasp type classification during dynamic arm position changes, improving both the "hardware" and "algorithm" components. In the hardware aspect, co-located synchronous EMG and force myography (FMG) signals are adopted as the multi-modal strategy. In the algorithm aspect, a sequential decision algorithm is proposed by combining the RNN-based deep learning model with a knowledge-based post-processing model. Experimental results showed that the classification accuracy of multi-modal EMG-FMG signals was increased by more than 10% compared with the EMG-only signal. Moreover, the classification accuracy of the proposed sequential decision algorithm improved the accuracy by more than 4% compared with other baseline models when using both EMG and FMG signals.

摘要

基于肌电图(EMG)对自然手部抓握类型进行稳健分类在实际假肢手控制中仍存在一些缺点,这是由于手部动作期间动态手臂位置变化的影响。本研究提供了一个在动态手臂位置变化期间进行稳健手部抓握类型分类的框架,改进了“硬件”和“算法”组件。在硬件方面,采用共定位同步肌电图和力肌电图(FMG)信号作为多模态策略。在算法方面,通过将基于循环神经网络(RNN)的深度学习模型与基于知识的后处理模型相结合,提出了一种顺序决策算法。实验结果表明,与仅使用肌电图信号相比,多模态肌电图 - 力肌电图信号的分类准确率提高了10%以上。此外,当同时使用肌电图和力肌电图信号时,所提出的顺序决策算法的分类准确率与其他基线模型相比提高了4%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d406/9211066/c6c4a2eb14ea/fnbot-16-853773-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验