Suppr超能文献

基于力肌电的深度域自适应与泛化的人机交互。

Force Myography-Based Human Robot Interactions via Deep Domain Adaptation and Generalization.

机构信息

Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC V5A 1S6, Canada.

Biomedical and Mobile Health Technology Laboratory, ETH Zurich, Lengghalde 5, 8008 Zurich, Switzerland.

出版信息

Sensors (Basel). 2021 Dec 29;22(1):211. doi: 10.3390/s22010211.

Abstract

Estimating applied force using force myography (FMG) technique can be effective in human-robot interactions (HRI) using data-driven models. A model predicts well when adequate training and evaluation are observed in same session, which is sometimes time consuming and impractical. In real scenarios, a pretrained transfer learning model predicting forces quickly once fine-tuned to target distribution would be a favorable choice and hence needs to be examined. Therefore, in this study a unified supervised FMG-based deep transfer learner (SFMG-DTL) model using CNN architecture was pretrained with multiple sessions FMG source data (D, T) and evaluated in estimating forces in separate target domains (D, T) via supervised domain adaptation (SDA) and supervised domain generalization (SDG). For SDA, case (i) intra-subject evaluation (D ≠ D, T ≈ T) was examined, while for SDG, case (ii) cross-subject evaluation (D ≠ D, T ≠ T) was examined. Fine tuning with few "target training data" calibrated the model effectively towards target adaptation. The proposed SFMG-DTL model performed better with higher estimation accuracies and lower errors (R ≥ 88%, NRMSE ≤ 0.6) in both cases. These results reveal that interactive force estimations via transfer learning will improve daily HRI experiences where "target training data" is limited, or faster adaptation is required.

摘要

使用基于力肌电图(FMG)技术的估计应用力可以在使用数据驱动模型的人机交互(HRI)中非常有效。当在同一会话中观察到足够的训练和评估时,模型预测效果良好,但这有时会很耗时且不切实际。在实际场景中,一旦针对目标分布进行微调,一个预先训练的可快速预测力的迁移学习模型将是一个有利的选择,因此需要对其进行检查。因此,在这项研究中,使用 CNN 架构的基于 FMG 的统一监督深度迁移学习器(SFMG-DTL)模型被预先训练,使用来自多个会话的 FMG 源数据(D、T),并通过监督领域自适应(SDA)和监督领域泛化(SDG)在单独的目标领域(D、T)中评估力的预测。对于 SDA,检查了案例(i)内个体评估(D ≠ D,T ≈ T),而对于 SDG,检查了案例(ii)跨个体评估(D ≠ D,T ≠ T)。使用少量“目标训练数据”进行微调可以有效地校准模型以适应目标。所提出的 SFMG-DTL 模型在两种情况下都表现出更好的性能,具有更高的估计精度和更低的误差(R≥88%,NRMSE≤0.6)。这些结果表明,通过迁移学习进行交互力估计将改善每日 HRI 体验,在这种体验中,“目标训练数据”有限,或者需要更快的适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecf3/8749939/5e55a6dd281a/sensors-22-00211-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验