Suppr超能文献

膜管状结构的形成、相互作用和演化的力学。

Mechanics of the Formation, Interaction, and Evolution of Membrane Tubular Structures.

机构信息

State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China.

Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, China.

出版信息

Biophys J. 2019 Mar 5;116(5):884-892. doi: 10.1016/j.bpj.2019.01.032. Epub 2019 Feb 2.

Abstract

Membrane nanotubes, also known as membrane tethers, play important functional roles in many cellular processes, such as trafficking and signaling. Although considerable progresses have been made in understanding the physics regulating the mechanical behaviors of individual membrane nanotubes, relatively little is known about the formation of multiple membrane nanotubes due to the rapid occurring process involving strong cooperative effects and complex configurational transitions. By exerting a pair of external extraction upon two separate membrane regions, here, we combine molecular dynamics simulations and theoretical analysis to investigate how the membrane nanotube formation and pulling behaviors are regulated by the separation between the pulling forces and how the membrane protrusions interact with each other. As the force separation increases, different membrane configurations are observed, including an individual tubular protrusion, a relatively less deformed protrusion with two nanotubes on its top forming a V shape, a Y-shaped configuration through nanotube coalescence via a zipper-like mechanism, and two weakly interacting tubular protrusions. The energy profile as a function of the separation is determined. Moreover, the directional flow of lipid molecules accompanying the membrane shape transition is analyzed. Our results provide new, to our knowledge, insights at a molecular level into the interaction between membrane protrusions and help in understanding the formation and evolution of intra- and intercellular membrane tubular networks involved in numerous cell activities.

摘要

膜纳米管,也称为膜栓,在许多细胞过程中发挥着重要的功能作用,如运输和信号传递。尽管在理解调节单个膜纳米管力学行为的物理原理方面已经取得了相当大的进展,但由于涉及强协同效应和复杂构象转变的快速发生过程,对于由于多个膜纳米管的形成知之甚少。通过对两个分离的膜区域施加一对外部提取力,在这里,我们结合分子动力学模拟和理论分析来研究膜纳米管形成和拉伸行为如何受到拉力分离的调节,以及膜突起如何相互作用。随着力分离的增加,观察到不同的膜构型,包括单个管状突起、顶部有两个纳米管的变形较小的突起,通过拉链状机制通过纳米管融合形成的 Y 形构型,以及两个弱相互作用的管状突起。确定了作为分离函数的能量分布。此外,还分析了伴随膜形状转变的脂质分子的定向流动。我们的结果从分子水平上提供了关于膜突起之间相互作用的新的、据我们所知的见解,有助于理解涉及许多细胞活动的细胞内和细胞间膜管状网络的形成和演化。

相似文献

1
Mechanics of the Formation, Interaction, and Evolution of Membrane Tubular Structures.
Biophys J. 2019 Mar 5;116(5):884-892. doi: 10.1016/j.bpj.2019.01.032. Epub 2019 Feb 2.
2
Size-dependent formation of membrane nanotubes: continuum modeling and molecular dynamics simulations.
Phys Chem Chem Phys. 2018 Jan 31;20(5):3474-3483. doi: 10.1039/c7cp06212e.
3
Membrane nanotube pearling restricted by confined polymers.
Soft Matter. 2018 Nov 28;14(46):9383-9392. doi: 10.1039/c8sm01711e.
4
Mechanics of cellular packing of nanorods with finite and non-uniform diameters.
Nanoscale. 2018 Aug 7;10(29):14090-14099. doi: 10.1039/c8nr04110e. Epub 2018 Jul 12.
6
Formation and Stability of Lipid Membrane Nanotubes.
ACS Nano. 2017 Sep 26;11(9):9558-9565. doi: 10.1021/acsnano.7b05542. Epub 2017 Sep 8.
7
Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients.
Small. 2018 May;14(21):e1703541. doi: 10.1002/smll.201703541. Epub 2018 Apr 17.
8
Unexpected membrane dynamics unveiled by membrane nanotube extrusion.
Biophys J. 2013 Mar 19;104(6):1248-56. doi: 10.1016/j.bpj.2013.01.051.
9
Coalescence of membrane tethers: experiments, theory, and applications.
Biophys J. 2005 Apr;88(4):2714-26. doi: 10.1529/biophysj.104.056473. Epub 2005 Feb 4.
10
Pulling of Tethers from the Cell Plasma Membrane Using Optical Tweezers.
Methods Mol Biol. 2020;2169:167-174. doi: 10.1007/978-1-0716-0732-9_15.

引用本文的文献

1
Biophysical Interaction Landscape of Mycobacterial Mycolic Acids and Phenolic Glycolipids with Host Macrophage Membranes.
ACS Appl Bio Mater. 2023 Dec 18;6(12):5555-5562. doi: 10.1021/acsabm.3c00748. Epub 2023 Nov 28.
2
Mechanical properties of tunneling nanotube and its mechanical stability in human embryonic kidney cells.
Front Cell Dev Biol. 2022 Sep 27;10:955676. doi: 10.3389/fcell.2022.955676. eCollection 2022.

本文引用的文献

1
Mechanics of cellular packing of nanorods with finite and non-uniform diameters.
Nanoscale. 2018 Aug 7;10(29):14090-14099. doi: 10.1039/c8nr04110e. Epub 2018 Jul 12.
2
Size-dependent formation of membrane nanotubes: continuum modeling and molecular dynamics simulations.
Phys Chem Chem Phys. 2018 Jan 31;20(5):3474-3483. doi: 10.1039/c7cp06212e.
3
Nanomechanical mechanism for lipid bilayer damage induced by carbon nanotubes confined in intracellular vesicles.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12374-12379. doi: 10.1073/pnas.1605030113. Epub 2016 Oct 17.
4
The good, the bad and the user in soft matter simulations.
Biochim Biophys Acta. 2016 Oct;1858(10):2529-2538. doi: 10.1016/j.bbamem.2016.02.004. Epub 2016 Feb 7.
5
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
6
Dry Martini, a coarse-grained force field for lipid membrane simulations with implicit solvent.
J Chem Theory Comput. 2015 Jan 13;11(1):260-75. doi: 10.1021/ct500477k. Epub 2014 Dec 17.
7
Curvature Softening and Negative Compressibility of Gel-Phase Lipid Membranes.
J Am Chem Soc. 2015 Oct 14;137(40):12752-5. doi: 10.1021/jacs.5b06800. Epub 2015 Oct 5.
8
Molecular modeling of membrane tube pearling and the effect of nanoparticle adsorption.
Phys Chem Chem Phys. 2014 Jun 14;16(22):10799-809. doi: 10.1039/c4cp01201a.
9
Determining the bending modulus of a lipid membrane by simulating buckling.
J Chem Phys. 2013 Jun 7;138(21):214110. doi: 10.1063/1.4808077.
10
Molecular structure of membrane tethers.
Biophys J. 2012 Apr 18;102(8):1866-71. doi: 10.1016/j.bpj.2012.03.048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验