Zhu Wenpeng, von dem Bussche Annette, Yi Xin, Qiu Yang, Wang Zhongying, Weston Paula, Hurt Robert H, Kane Agnes B, Gao Huajian
School of Engineering, Brown University, Providence, RI 02912.
Department of Engineering Mechanics, Center for Advanced Mechanics and Materials, Key Laboratory of Applied Mechanics, Tsinghua University, Beijing 100084, China.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12374-12379. doi: 10.1073/pnas.1605030113. Epub 2016 Oct 17.
Understanding the behavior of low-dimensional nanomaterials confined in intracellular vesicles has been limited by the resolution of bioimaging techniques and the complex nature of the problem. Recent studies report that long, stiff carbon nanotubes are more cytotoxic than flexible varieties, but the mechanistic link between stiffness and cytotoxicity is not understood. Here we combine analytical modeling, molecular dynamics simulations, and in vitro intracellular imaging methods to reveal 1D carbon nanotube behavior within intracellular vesicles. We show that stiff nanotubes beyond a critical length are compressed by lysosomal membranes causing persistent tip contact with the inner membrane leaflet, leading to lipid extraction, lysosomal permeabilization, release of cathepsin B (a lysosomal protease) into the cytoplasm, and cell death. The precise material parameters needed to activate this unique mechanical pathway of nanomaterials interaction with intracellular vesicles were identified through coupled modeling, simulation, and experimental studies on carbon nanomaterials with wide variation in size, shape, and stiffness, leading to a generalized classification diagram for 1D nanocarbons that distinguishes pathogenic from biocompatible varieties based on a nanomechanical buckling criterion. For a wide variety of other 1D material classes (metal, oxide, polymer), this generalized classification diagram shows a critical threshold in length/width space that represents a transition from biologically soft to stiff, and thus identifies the important subset of all 1D materials with the potential to induce lysosomal permeability by the nanomechanical mechanism under investigation.
生物成像技术的分辨率以及该问题的复杂性限制了人们对限制在细胞内囊泡中的低维纳米材料行为的理解。最近的研究报告称,长而硬的碳纳米管比柔性碳纳米管的细胞毒性更强,但硬度与细胞毒性之间的机制联系尚不清楚。在此,我们结合分析模型、分子动力学模拟和体外细胞内成像方法,以揭示细胞内囊泡中的一维碳纳米管行为。我们发现,超过临界长度的硬纳米管会被溶酶体膜压缩,导致其尖端持续与内膜小叶接触,进而导致脂质提取、溶酶体通透性增加、组织蛋白酶B(一种溶酶体蛋白酶)释放到细胞质中,并导致细胞死亡。通过对尺寸、形状和硬度差异很大的碳纳米材料进行耦合建模、模拟和实验研究,确定了激活纳米材料与细胞内囊泡相互作用这一独特机械途径所需的精确材料参数,从而得出了一维纳米碳的通用分类图,该图基于纳米力学屈曲准则区分了致病性和生物相容性品种。对于多种其他一维材料类别(金属、氧化物、聚合物),该通用分类图显示了长度/宽度空间中的一个临界阈值,该阈值代表了从生物软质到硬质的转变,从而确定了所有一维材料中有可能通过正在研究的纳米力学机制诱导溶酶体通透性的重要子集。