Suppr超能文献

“二次自适应算法”与“混合算子分裂”的结合或均匀化算法,用于提高心室细胞模型钠离子通道 Markov 模型中抗加速稳定性。

Combination of "quadratic adaptive algorithm" and "hybrid operator splitting" or uniformization algorithms for stability against acceleration in the Markov model of sodium ion channels in the ventricular cell model.

机构信息

School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.

Department of Mathematics, National Cheng Kung University, Tainan, 701, Taiwan, Republic of China.

出版信息

Med Biol Eng Comput. 2019 Jun;57(6):1367-1379. doi: 10.1007/s11517-019-01956-5. Epub 2019 Feb 23.

Abstract

The Markovian model has generally been used for cardiac electrophysiological simulations. However, the Markovian model is so stiff that speeding up the computation of the algorithms with variable time-steps always results in simulation instability. In particular, the unstable simulations always occur at a low voltage rate or current change, while transition rates in the Markovian model are changing markedly. The uniformization (UNI) method allows for a Markovian model simulation with high stability but also a high computation cost. To save computation costs with variable time-steps, we propose a speed increasing idea that is a compromise to the trade-off between stability and acceleration by combining Chen-Chen-Luo's "quadratic adaptive algorithm" (CCL) method with "hybrid operator splitting" (HOS) into the solver (CCL + HOS solver). The computation cost of this CCL + HOS solver is approximately 24 times lower than the CCL + UNI solver, and the CCL + HOS solver can function 295 times faster in comparison to the HOS solver with a fixed time-step (DT). The suggested optimal solver should be CCL + HOS solver with a maximum time-step at 0.1 ms due to its high speed with low error. Additionally, the CCL method has much better performance and stability than the hybrid method in this single-cell model simulation.

摘要

马尔可夫模型通常用于心脏电生理模拟。然而,马尔可夫模型非常僵硬,使用变时步算法加速计算总是会导致模拟不稳定。特别是,在电压率或电流变化较低时,不稳定的模拟总是会发生,而马尔可夫模型中的转移率则会明显变化。均匀化(UNI)方法允许进行具有高稳定性但计算成本也很高的马尔可夫模型模拟。为了在变时步计算中节省计算成本,我们提出了一种加速思想,该思想通过将 Chen-Chen-Luo 的“二次自适应算法”(CCL)方法与“混合算子分裂”(HOS)结合到求解器中(CCL+HOS 求解器),在稳定性和加速之间进行权衡。该 CCL+HOS 求解器的计算成本大约比 CCL+UNI 求解器低 24 倍,与使用固定时步(DT)的 HOS 求解器相比,CCL+HOS 求解器的速度快 295 倍。由于其速度快、误差低,建议使用最大时步为 0.1ms 的 CCL+HOS 求解器作为最优求解器。此外,在这个单细胞模型模拟中,CCL 方法比混合方法具有更好的性能和稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验