Tri-Institutional MD-PhD Program, Weill Cornell Medical College/The Rockefeller University/Sloan-Kettering Cancer Institute, New York, New York, USA, 10021.
Department of Pharmacology, University of California, Davis, Genome Building Rm 3503, Davis, CA 95616-8636.
Circ Res. 2013 Sep 13;113(7):e50-e61. doi: 10.1161/CIRCRESAHA.113.301971. Epub 2013 Jul 29.
The antianginal ranolazine blocks the human ether-a-go-go-related gene-based current IKr at therapeutic concentrations and causes QT interval prolongation. Thus, ranolazine is contraindicated for patients with preexisting long-QT and those with repolarization abnormalities. However, with its preferential targeting of late INa (INaL), patients with disease resulting from increased INaL from inherited defects (eg, long-QT syndrome type 3 or disease-induced electric remodeling (eg, ischemic heart failure) might be exactly the ones to benefit most from the presumed antiarrhythmic properties of ranolazine.
We developed a computational model to predict if therapeutic effects of pharmacological targeting of INaL by ranolazine prevailed over the off-target block of IKr in the setting of inherited long-QT syndrome type 3 and heart failure.
We developed computational models describing the kinetics and the interaction of ranolazine with cardiac Na(+) channels in the setting of normal physiology, long-QT syndrome type 3-linked ΔKPQ mutation, and heart failure. We then simulated clinically relevant concentrations of ranolazine and predicted the combined effects of Na(+) channel and IKr blockade by both the parent compound ranolazine and its active metabolites, which have shown potent blocking effects in the therapeutically relevant range. Our simulations suggest that ranolazine is effective at normalizing arrhythmia triggers in bradycardia-dependent arrhythmias in long-QT syndrome type 3 as well tachyarrhythmogenic triggers arising from heart failure-induced remodeling.
Our model predictions suggest that acute targeting of INaL with ranolazine may be an effective therapeutic strategy in diverse arrhythmia-provoking situations that arise from a common pathway of increased pathological INaL.
抗心绞痛药物雷诺嗪以治疗浓度阻断人 Ether-a-go-go 相关基因电流 IKr,导致 QT 间期延长。因此,雷诺嗪禁用于有预存长 QT 或复极化异常的患者。然而,由于其优先靶向晚期 INa(INaL),因此患有因遗传性缺陷导致 INaL 增加(例如,长 QT 综合征 3 型或疾病引起的电重构(例如,缺血性心力衰竭)的患者可能正是最受益于雷诺嗪假定抗心律失常特性的患者。
我们开发了一种计算模型,以预测在遗传性长 QT 综合征 3 型和心力衰竭的情况下,雷诺嗪对 INaL 的药理学靶向治疗效果是否优于对 IKr 的非靶向阻断。
我们开发了描述在正常生理学、长 QT 综合征 3 型相关 ΔKPQ 突变和心力衰竭情况下雷诺嗪与心脏 Na(+)通道的动力学和相互作用的计算模型。然后,我们模拟了临床上相关浓度的雷诺嗪,并预测了母体化合物雷诺嗪及其在治疗相关范围内表现出强阻断作用的活性代谢物对 Na(+)通道和 IKr 阻断的联合作用。我们的模拟表明,雷诺嗪可有效纠正长 QT 综合征 3 型中的心动过缓依赖性心律失常以及心力衰竭引起的重构所引起的心动过速性心律失常的触发因素。
我们的模型预测表明,雷诺嗪对 INaL 的急性靶向治疗可能是一种有效的治疗策略,适用于源于病理性 INaL 增加的常见途径引起的各种心律失常诱发情况。