Arya Sankalp, Dubey Vineet, Sen Deepak, Sharma Atin, Pathania Ranjana
Department of Biotechnology, Indian Institute of Technology-Roorkee, Roorkee, Uttarakhand, India.
Division of Agricultural and Environmental Sciences, University of Nottingham, Nottingham, UK.
Methods Mol Biol. 2019;1946:307-320. doi: 10.1007/978-1-4939-9118-1_27.
Small RNAs in bacteria are noncoding RNAs that act as posttranscriptional regulators of gene expression. Over time, they have gained importance as fine-tuners of expression of genes involved in critical biological processes like metabolism, fitness, virulence, and antibiotic resistance. The availability of various high-throughput strategies enable the detection of these molecules but are technically challenging and time-intensive. Thus, to fulfil the need of a simple computational algorithm pipeline to predict these sRNAs in bacterial species, we detail a user-friendly ensemble method with specific application in Acinetobacter spp. The developed algorithms primarily look for intergenic regions in the genome of related Acinetobacter spp., thermodynamic stability, and conservation of RNA secondary structures to generate a model input for the sRNAPredict3 tool which utilizes all this information to generate a list of putative sRNA. We confirmed the accuracy of the method by comparing its output with the RNA-seq data and found the method to be faster and more accurate for Acinetobacter baumannii ATCC 17978. Thus, this method improves the identification of sRNA in Acinetobacter and other bacterial species.
细菌中的小RNA是非编码RNA,可作为基因表达的转录后调节因子。随着时间的推移,它们作为参与代谢、适应性、毒力和抗生素抗性等关键生物学过程的基因表达微调因子变得越来越重要。各种高通量策略的应用能够检测这些分子,但技术上具有挑战性且耗时。因此,为了满足使用简单计算算法管道来预测细菌物种中这些小RNA的需求,我们详细介绍了一种在不动杆菌属中有特定应用的用户友好型集成方法。所开发的算法主要在相关不动杆菌属的基因组中寻找基因间区域以及RNA二级结构的热力学稳定性和保守性,以生成sRNAPredict3工具的模型输入,该工具利用所有这些信息生成推定小RNA列表。我们通过将其输出与RNA测序数据进行比较来确认该方法的准确性,发现该方法对于鲍曼不动杆菌ATCC 17978更快且更准确。因此,该方法改进了不动杆菌属和其他细菌物种中小RNA的鉴定。