Suppr超能文献

用于检测罕见单倍型与两种相关连续表型关联的双变量定量贝叶斯套索法

Bivariate quantitative Bayesian LASSO for detecting association of rare haplotypes with two correlated continuous phenotypes.

作者信息

Sajal Ibrahim Hossain, Biswas Swati

机构信息

Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, United States.

出版信息

Front Genet. 2023 Mar 9;14:1104727. doi: 10.3389/fgene.2023.1104727. eCollection 2023.

Abstract

In genetic association studies, the multivariate analysis of correlated phenotypes offers statistical and biological advantages compared to analyzing one phenotype at a time. The joint analysis utilizes additional information contained in the correlation and avoids multiple testing. It also provides an opportunity to investigate and understand shared genetic mechanisms of multiple phenotypes. Bivariate logistic Bayesian LASSO (LBL) was proposed earlier to detect rare haplotypes associated with two binary phenotypes or one binary and one continuous phenotype jointly. There is currently no haplotype association test available that can handle multiple continuous phenotypes. In this study, by employing the framework of bivariate LBL, we propose bivariate quantitative Bayesian LASSO (QBL) to detect rare haplotypes associated with two continuous phenotypes. Bivariate QBL removes unassociated haplotypes by regularizing the regression coefficients and utilizing a latent variable to model correlation between two phenotypes. We carry out extensive simulations to investigate the performance of bivariate QBL and compare it with that of a standard (univariate) haplotype association test, Haplo.score (applied twice to two phenotypes individually). Bivariate QBL performs better than Haplo.score in all simulations with varying degrees of power gain. We analyze Genetic Analysis Workshop 19 exome sequencing data on systolic and diastolic blood pressures and detect several rare haplotypes associated with the two phenotypes.

摘要

在基因关联研究中,与一次分析一个表型相比,对相关表型进行多变量分析具有统计学和生物学优势。联合分析利用了相关性中包含的额外信息,并避免了多重检验。它还提供了一个机会来研究和理解多种表型的共享遗传机制。早期提出了双变量逻辑贝叶斯套索法(LBL)来联合检测与两种二元表型或一种二元和一种连续表型相关的罕见单倍型。目前还没有可用于处理多种连续表型的单倍型关联检验。在本研究中,通过采用双变量LBL框架,我们提出了双变量定量贝叶斯套索法(QBL)来检测与两种连续表型相关的罕见单倍型。双变量QBL通过对回归系数进行正则化并利用一个潜在变量对两种表型之间的相关性进行建模,从而去除不相关的单倍型。我们进行了广泛的模拟,以研究双变量QBL的性能,并将其与标准(单变量)单倍型关联检验Haplo.score(分别对两种表型应用两次)的性能进行比较。在所有模拟中,双变量QBL的表现均优于Haplo.score,且有不同程度的效能提升。我们分析了遗传分析研讨会19的外显子组测序数据中的收缩压和舒张压,并检测到了几种与这两种表型相关的罕见单倍型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a6/10033866/a3bc0f80aa4e/fgene-14-1104727-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验