Suppr超能文献

及时但不过度:确定移动健康中的治疗时机

Just-in-Time but Not Too Much: Determining Treatment Timing in Mobile Health.

作者信息

Liao Peng, Dempsey Walter, Sarker Hillol, Hossain Syed Monowar, Al'absi Mustafa, Klasnja Predrag, Murphy Susan

机构信息

University of Michigan, Ann Arbor, MI.

Harvard University, Cambridge, MA.

出版信息

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2018 Dec;2(4). doi: 10.1145/3287057.

Abstract

There is a growing scientific interest in the use and development of just-in-time adaptive interventions in mobile health. These mobile interventions typically involve treatments, such as reminders, activity suggestions and motivational messages, delivered via notifications on a smartphone or a wearable to help users make healthy decisions in the moment. To be effective in influencing health, the combination of the right treatment and right delivery time is likely critical. A variety of prediction/detection algorithms have been developed with the goal of pinpointing the best delivery times. The best delivery times might be times of greatest risk and/or times at which the user might be most receptive to the treatment notifications. In addition, to avoid over burdening users, there is often a constraint on the number of treatments that should be provided per time interval (e.g., day or week). Yet there may be many more times at which the user is predicted or detected to be at risk and/or receptive. The goal then is to spread treatment uniformly across all of these times. In this paper, we introduce a method that spreads the treatment uniformly across the delivery times. This method can also be used to provide data for learning whether the treatments are effective at the delivery times. This work is motivated by our work on two mobile health studies, a smoking cessation study and a physical activity study.

摘要

科学界对移动健康中即时自适应干预措施的使用和开发的兴趣与日俱增。这些移动干预措施通常包括通过智能手机或可穿戴设备上的通知发送的治疗方法,如提醒、活动建议和激励信息,以帮助用户即时做出健康决策。为了有效地影响健康,正确的治疗方法与正确的发送时间相结合可能至关重要。已经开发了各种预测/检测算法,目标是确定最佳发送时间。最佳发送时间可能是风险最大的时间和/或用户可能最容易接受治疗通知的时间。此外,为了避免给用户造成过重负担,通常对每个时间间隔(如每天或每周)应提供的治疗次数有限制。然而,可能有更多时间被预测或检测到用户处于风险中或容易接受治疗。那么目标就是在所有这些时间均匀地分配治疗。在本文中,我们介绍一种在发送时间上均匀分配治疗的方法。该方法还可用于提供数据,以了解治疗在发送时间是否有效。这项工作是受我们在两项移动健康研究(一项戒烟研究和一项身体活动研究)中的工作启发而开展的。

相似文献

1
Just-in-Time but Not Too Much: Determining Treatment Timing in Mobile Health.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2018 Dec;2(4). doi: 10.1145/3287057.
3
Reinforcement Learning to Send Reminders at Right Moments in Smartphone Exercise Application: A Feasibility Study.
Int J Environ Res Public Health. 2021 Jun 4;18(11):6059. doi: 10.3390/ijerph18116059.
5
Personalized HeartSteps: A Reinforcement Learning Algorithm for Optimizing Physical Activity.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Mar;4(1). doi: 10.1145/3381007.
8
Mobile phone messaging reminders for attendance at healthcare appointments.
Cochrane Database Syst Rev. 2013 Dec 5;2013(12):CD007458. doi: 10.1002/14651858.CD007458.pub3.
9
Evaluation of user satisfaction and usability of a mobile app for smoking cessation.
Comput Methods Programs Biomed. 2019 Dec;182:105042. doi: 10.1016/j.cmpb.2019.105042. Epub 2019 Aug 23.
10
Data-driven Interpretable Policy Construction for Personalized Mobile Health.
2022 IEEE Int Conf Digit Health IEEE IDCH 2022 (2022). 2022 Jul;2022:13-22. doi: 10.1109/ICDH55609.2022.00010. Epub 2022 Aug 24.

引用本文的文献

2
Realizing the potential of mobile interventions for education.
NPJ Sci Learn. 2024 Dec 12;9(1):76. doi: 10.1038/s41539-024-00289-9.
3
5
Data-driven Interpretable Policy Construction for Personalized Mobile Health.
2022 IEEE Int Conf Digit Health IEEE IDCH 2022 (2022). 2022 Jul;2022:13-22. doi: 10.1109/ICDH55609.2022.00010. Epub 2022 Aug 24.
7
A Call to Action on Assessing and Mitigating Bias in Artificial Intelligence Applications for Mental Health.
Perspect Psychol Sci. 2023 Sep;18(5):1062-1096. doi: 10.1177/17456916221134490. Epub 2022 Dec 9.
8
Microrandomized Trials: Developing Just-in-Time Adaptive Interventions for Better Public Health.
Am J Public Health. 2023 Jan;113(1):60-69. doi: 10.2105/AJPH.2022.307150. Epub 2022 Nov 22.
10
Advancing Behavioral Intervention and Theory Development for Mobile Health: The HeartSteps II Protocol.
Int J Environ Res Public Health. 2022 Feb 17;19(4):2267. doi: 10.3390/ijerph19042267.

本文引用的文献

1
mCerebrum: A Mobile Sensing Software Platform for Development and Validation of Digital Biomarkers and Interventions.
Proc Int Conf Embed Netw Sens Syst. 2017 Nov;2017. doi: 10.1145/3131672.3131694.
5
Finding Significant Stress Episodes in a Discontinuous Time Series of Rapidly Varying Mobile Sensor Data.
Proc SIGCHI Conf Hum Factor Comput Syst. 2016 May;2016:4489-4501. doi: 10.1145/2858036.2858218.
7
The alcohol tracker application: an initial evaluation of user preferences.
BMJ Innov. 2016 Jan;2(1):8-13. doi: 10.1136/bmjinnov-2015-000087. Epub 2015 Oct 9.
8
Randomised trials for the Fitbit generation.
Signif (Oxf). 2015 Dec 1;12(6):20-23. doi: 10.1111/j.1740-9713.2015.00863.x.
9
Sample size calculations for micro-randomized trials in mHealth.
Stat Med. 2016 May 30;35(12):1944-71. doi: 10.1002/sim.6847. Epub 2015 Dec 28.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验