Suppr超能文献

及时但不过度:确定移动健康中的治疗时机

Just-in-Time but Not Too Much: Determining Treatment Timing in Mobile Health.

作者信息

Liao Peng, Dempsey Walter, Sarker Hillol, Hossain Syed Monowar, Al'absi Mustafa, Klasnja Predrag, Murphy Susan

机构信息

University of Michigan, Ann Arbor, MI.

Harvard University, Cambridge, MA.

出版信息

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2018 Dec;2(4). doi: 10.1145/3287057.

Abstract

There is a growing scientific interest in the use and development of just-in-time adaptive interventions in mobile health. These mobile interventions typically involve treatments, such as reminders, activity suggestions and motivational messages, delivered via notifications on a smartphone or a wearable to help users make healthy decisions in the moment. To be effective in influencing health, the combination of the right treatment and right delivery time is likely critical. A variety of prediction/detection algorithms have been developed with the goal of pinpointing the best delivery times. The best delivery times might be times of greatest risk and/or times at which the user might be most receptive to the treatment notifications. In addition, to avoid over burdening users, there is often a constraint on the number of treatments that should be provided per time interval (e.g., day or week). Yet there may be many more times at which the user is predicted or detected to be at risk and/or receptive. The goal then is to spread treatment uniformly across all of these times. In this paper, we introduce a method that spreads the treatment uniformly across the delivery times. This method can also be used to provide data for learning whether the treatments are effective at the delivery times. This work is motivated by our work on two mobile health studies, a smoking cessation study and a physical activity study.

摘要

科学界对移动健康中即时自适应干预措施的使用和开发的兴趣与日俱增。这些移动干预措施通常包括通过智能手机或可穿戴设备上的通知发送的治疗方法,如提醒、活动建议和激励信息,以帮助用户即时做出健康决策。为了有效地影响健康,正确的治疗方法与正确的发送时间相结合可能至关重要。已经开发了各种预测/检测算法,目标是确定最佳发送时间。最佳发送时间可能是风险最大的时间和/或用户可能最容易接受治疗通知的时间。此外,为了避免给用户造成过重负担,通常对每个时间间隔(如每天或每周)应提供的治疗次数有限制。然而,可能有更多时间被预测或检测到用户处于风险中或容易接受治疗。那么目标就是在所有这些时间均匀地分配治疗。在本文中,我们介绍一种在发送时间上均匀分配治疗的方法。该方法还可用于提供数据,以了解治疗在发送时间是否有效。这项工作是受我们在两项移动健康研究(一项戒烟研究和一项身体活动研究)中的工作启发而开展的。

相似文献

8
Mobile phone messaging reminders for attendance at healthcare appointments.用于提醒出席医疗预约的手机短信
Cochrane Database Syst Rev. 2013 Dec 5;2013(12):CD007458. doi: 10.1002/14651858.CD007458.pub3.
10
Data-driven Interpretable Policy Construction for Personalized Mobile Health.用于个性化移动健康的数据驱动可解释策略构建
2022 IEEE Int Conf Digit Health IEEE IDCH 2022 (2022). 2022 Jul;2022:13-22. doi: 10.1109/ICDH55609.2022.00010. Epub 2022 Aug 24.

引用本文的文献

5
Data-driven Interpretable Policy Construction for Personalized Mobile Health.用于个性化移动健康的数据驱动可解释策略构建
2022 IEEE Int Conf Digit Health IEEE IDCH 2022 (2022). 2022 Jul;2022:13-22. doi: 10.1109/ICDH55609.2022.00010. Epub 2022 Aug 24.

本文引用的文献

8
Randomised trials for the Fitbit generation.针对Fitbit一代产品的随机试验。
Signif (Oxf). 2015 Dec 1;12(6):20-23. doi: 10.1111/j.1740-9713.2015.00863.x.
9
Sample size calculations for micro-randomized trials in mHealth.移动健康中微随机试验的样本量计算。
Stat Med. 2016 May 30;35(12):1944-71. doi: 10.1002/sim.6847. Epub 2015 Dec 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验