Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, Maryland.
Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland.
J Neurosci Res. 2019 Aug;97(8):975-990. doi: 10.1002/jnr.24397. Epub 2019 Feb 23.
Nicotinamide adenine dinucleotide (NAD ) is a central signaling molecule and enzyme cofactor that is involved in a variety of fundamental biological processes. NAD levels decline with age, neurodegenerative conditions, acute brain injury, and in obesity or diabetes. Loss of NAD results in impaired mitochondrial and cellular functions. Administration of NAD precursor, nicotinamide mononucleotide (NMN), has shown to improve mitochondrial bioenergetics, reverse age-associated physiological decline, and inhibit postischemic NAD degradation and cellular death. In this study, we identified a novel link between NAD metabolism and mitochondrial dynamics. A single dose (62.5 mg/kg) of NMN, administered to male mice, increases hippocampal mitochondria NAD pools for up to 24 hr posttreatment and drives a sirtuin 3 (SIRT3)-mediated global decrease in mitochondrial protein acetylation. This results in a reduction of hippocampal reactive oxygen species levels via SIRT3-driven deacetylation of mitochondrial manganese superoxide dismutase. Consequently, mitochondria in neurons become less fragmented due to lower interaction of phosphorylated fission protein, dynamin-related protein 1 (pDrp1 [S616]), with mitochondria. In conclusion, manipulation of mitochondrial NAD levels by NMN results in metabolic changes that protect mitochondria against reactive oxygen species and excessive fragmentation, offering therapeutic approaches for pathophysiologic stress conditions.
烟酰胺腺嘌呤二核苷酸(NAD)是一种重要的信号分子和酶辅酶,参与多种基本的生物过程。NAD 水平随着年龄的增长、神经退行性疾病、急性脑损伤以及肥胖或糖尿病而降低。NAD 的损失导致线粒体和细胞功能受损。烟酰胺单核苷酸(NMN)作为 NAD 的前体,已被证明可以改善线粒体生物能,逆转与年龄相关的生理衰退,并抑制缺血后 NAD 的降解和细胞死亡。在这项研究中,我们发现了 NAD 代谢与线粒体动力学之间的新联系。单次给予雄性小鼠 62.5mg/kg 的 NMN,可使海马体中的线粒体 NAD 池在治疗后长达 24 小时增加,并通过 SIRT3 介导的全局降低线粒体蛋白乙酰化来驱动 SIRT3 介导的全局降低。这通过 SIRT3 驱动的线粒体锰超氧化物歧化酶去乙酰化作用降低海马体中的活性氧水平。结果,由于磷酸化分裂蛋白 dynamin 相关蛋白 1(pDrp1[S616])与线粒体的相互作用降低,神经元中的线粒体变得不那么碎片化。总之,NMN 通过对线粒体 NAD 水平的操纵,导致代谢变化,从而保护线粒体免受活性氧和过度碎片化的影响,为病理生理应激条件提供了治疗方法。