Suppr超能文献

基于适应性实验室进化和转录组分析鉴定提高酿酒酵母甘油同化能力的代谢工程靶点。

Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis.

机构信息

School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.

NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.

出版信息

J Biosci Bioeng. 2019 Aug;128(2):162-169. doi: 10.1016/j.jbiosc.2019.02.001. Epub 2019 Feb 22.

Abstract

Glycerol, a by-product of biodiesel production, has been utilized as a raw material for bioproduction. Saccharomyces cerevisiae, which has been used as a host microorganism for bioproduction, possesses the metabolic pathways for glycerol assimilation, but it cannot grow on glycerol as a carbon source. In this study, we identified metabolic engineering targets to improve the glycerol assimilation ability of S. cerevisiae based on adaptive laboratory evolution experiments using serial transfer of culture on glycerol and transcriptome analysis of the evolved cells using RNA-sequencing. The transcriptome data revealed that the upregulation of genes related to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation contributed to the increased specific growth rate on glycerol during adaptive evolution. Furthermore, genes related to the pentose phosphate pathway were downregulated. Based on these observations, we identified metabolic engineering targets for improving glycerol assimilation. Overexpression of HAP4, which encodes one of the subunits of the Hap2p/3p/4p/5p transcription factor complex involved in the upregulation of the TCA cycle genes, or disruption of RIM15, which encodes a protein kinase related to the transcription regulator Gis1p, as well as overexpression of STL1, which encodes the glycerol/H symporter, improved the growth of S. cerevisiae on glycerol as the main carbon source. Our results indicate that the engineering targets can be identified based on adaptive laboratory evolution and transcriptome analysis of the evolved cells, and that the glycerol assimilation ability of S. cerevisiae is indeed improved by engineering the identified targets.

摘要

甘油是生物柴油生产的副产品,已被用作生物生产的原料。酿酒酵母已被用作生物生产的宿主微生物,具有甘油同化的代谢途径,但它不能以甘油作为碳源生长。在这项研究中,我们根据在甘油上进行连续传代的适应性实验室进化实验和使用 RNA 测序的进化细胞的转录组分析,确定了代谢工程靶点,以提高酿酒酵母的甘油同化能力。转录组数据表明,与三羧酸 (TCA) 循环和氧化磷酸化相关的基因上调有助于在适应性进化过程中提高甘油的比生长速率。此外,与戊糖磷酸途径相关的基因下调。基于这些观察结果,我们确定了改善甘油同化的代谢工程靶点。过表达编码参与 TCA 循环基因上调的 Hap2p/3p/4p/5p 转录因子复合物的一个亚基的 HAP4 的基因,或敲除编码与转录调节剂 Gis1p 相关的蛋白激酶的 RIM15 的基因,以及过表达编码甘油/H 同向转运蛋白的 STL1 的基因,都可以提高酿酒酵母在甘油作为主要碳源时的生长。我们的结果表明,可以根据适应性实验室进化和进化细胞的转录组分析来确定工程靶点,并且通过工程鉴定的靶点确实可以提高酿酒酵母的甘油同化能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验