Department of Molecular Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, 2109, North Ryde, NSW, Australia.
CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, 2601, Australia.
Nat Commun. 2020 Nov 4;11(1):5564. doi: 10.1038/s41467-020-19390-9.
Utilising one-carbon substrates such as carbon dioxide, methane, and methanol is vital to address the current climate crisis. Methylotrophic metabolism enables growth and energy generation from methanol, providing an alternative to sugar fermentation. Saccharomyces cerevisiae is an important industrial microorganism for which growth on one-carbon substrates would be relevant. However, its ability to metabolize methanol has been poorly characterised. Here, using adaptive laboratory evolution and C-tracer analysis, we discover that S. cerevisiae has a native capacity for methylotrophy. A systems biology approach reveals that global rearrangements in central carbon metabolism fluxes, gene expression changes, and a truncation of the uncharacterized transcriptional regulator Ygr067cp supports improved methylotrophy in laboratory evolved S. cerevisiae. This research paves the way for further biotechnological development and fundamental understanding of methylotrophy in the preeminent eukaryotic model organism and industrial workhorse, S. cerevisiae.
利用一碳底物,如二氧化碳、甲烷和甲醇,对于应对当前的气候危机至关重要。甲醇营养代谢使微生物能够利用甲醇生长和产生能量,为糖发酵提供了替代途径。酿酒酵母是一种重要的工业微生物,如果能够利用一碳底物,将具有重要意义。然而,其甲醇代谢能力尚未得到充分表征。在这里,我们通过适应性实验室进化和 C 示踪剂分析,发现酿酒酵母具有天然的甲醇营养能力。系统生物学方法表明,中心碳代谢通量的全局重排、基因表达变化以及未表征的转录调节因子 Ygr067cp 的截断,支持实验室进化的酿酒酵母中改善的甲醇营养能力。这项研究为进一步的生物技术发展和对卓越的真核模式生物和工业主力酿酒酵母的甲醇营养的基础理解铺平了道路。