Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
J Biomol NMR. 2019 Apr;73(3-4):141-153. doi: 10.1007/s10858-019-00237-5. Epub 2019 Feb 25.
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is a major technique for the characterization of the structural dynamics of biopolymers at atomic resolution. However, the intrinsic low sensitivity of this technique poses significant limitations to its routine application in structural biology. Here we achieve substantial savings in experimental time using a new subclass of Polarization Optimized Experiments (POEs) that concatenate TEDOR and SPECIFIC-CP transfers into a single pulse sequence. Specifically, we designed new 2D and 3D experiments (2D TEDOR-NCX, 3D TEDOR-NCOCX, and 3D TEDOR-NCACX) to obtain distance measurements and heteronuclear chemical shift correlations for resonance assignments using only one experiment. We successfully tested these experiments on N-Acetyl-Val-Leu dipeptide, microcrystalline U-C,N ubiquitin, and single- and multi-span membrane proteins reconstituted in lipid membranes. These pulse sequences can be implemented on any ssNMR spectrometer equipped with standard solid-state hardware using only one receiver. Since these new POEs speed up data acquisition considerably, we anticipate their broad application to fibrillar, microcrystalline, and membrane-bound proteins.
魔角旋转(MAS)固态核磁共振(ssNMR)光谱学是一种用于在原子分辨率下对生物聚合物结构动力学进行特征分析的主要技术。然而,该技术固有的低灵敏度对其在结构生物学中的常规应用构成了重大限制。在这里,我们使用一种新的极化优化实验(POE)子类,将 TEDOR 和 SPECIFIC-CP 转移串联到单个脉冲序列中,从而在实验时间上取得了实质性的节省。具体来说,我们设计了新的 2D 和 3D 实验(2D TEDOR-NCX、3D TEDOR-NCOCX 和 3D TEDOR-NCACX),仅使用一个实验即可获得距离测量和异核化学位移相关信息,用于共振分配。我们成功地在 N-乙酰-Val-Leu 二肽、微晶 U-C,N 泛素以及在脂质膜中重组的单跨和多跨膜蛋白上测试了这些实验。这些脉冲序列可以在任何配备标准固态硬件的 ssNMR 光谱仪上实现,仅使用一个接收器。由于这些新的 POE 大大加快了数据采集速度,我们预计它们将广泛应用于纤维状、微晶状和膜结合蛋白。