Suppr超能文献

OBELISK-Net:稀疏可变形卷积解决三维多器官分割问题,所需层数更少。

OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions.

机构信息

Institute of Medical Informatics, University of Lübeck, Germany.

Biomedical Image Analysis Group, Imperial College London, UK.

出版信息

Med Image Anal. 2019 May;54:1-9. doi: 10.1016/j.media.2019.02.006. Epub 2019 Feb 13.

Abstract

Deep networks have set the state-of-the-art in most image analysis tasks by replacing handcrafted features with learned convolution filters within end-to-end trainable architectures. Still, the specifications of a convolutional network are subject to much manual design - the shape and size of the receptive field for convolutional operations is a very sensitive part that has to be tuned for different image analysis applications. 3D fully-convolutional multi-scale architectures with skip-connection that excel at semantic segmentation and landmark localisation have huge memory requirements and rely on large annotated datasets - an important limitation for wider adaptation in medical image analysis. We propose a novel and effective method based on trainable 3D convolution kernels that learns both filter coefficients and spatial filter offsets in a continuous space based on the principle of differentiable image interpolation first introduced for spatial transformer network. A deep network that incorporates this one binary extremely large and inflecting sparse kernel (OBELISK) filter requires fewer trainable parameters and less memory while achieving high quality results compared to fully-convolutional U-Net architectures on two challenging 3D CT multi-organ segmentation tasks. Extensive validation experiments indicate that the performance of sparse deformable convolutions is due to their ability to capture large spatial context with few expressive filter parameters and that network depth is not always necessary to learn complex shape and appearance features. A combination with conventional CNNs further improves the delineation of small organs with large shape variations and the fast inference time using flexible image sampling may offer new potential use cases for deep networks in computer-assisted, image-guided interventions.

摘要

深度网络通过在端到端可训练的架构中用学习到的卷积滤波器替代手工制作的特征,在大多数图像分析任务中达到了最新水平。然而,卷积网络的规格仍然需要大量的人工设计 - 卷积操作的感受野的形状和大小是一个非常敏感的部分,需要针对不同的图像分析应用进行调整。具有跳过连接的 3D 全卷积多尺度架构在语义分割和地标定位方面表现出色,但需要巨大的内存要求和大型注释数据集 - 这是医学图像分析更广泛应用的一个重要限制。我们提出了一种新颖而有效的方法,该方法基于可训练的 3D 卷积核,根据首先为空间变形网络引入的可微图像插值原理,在连续空间中学习滤波器系数和空间滤波器偏移。与完全卷积的 U-Net 架构相比,在两个具有挑战性的 3D CT 多器官分割任务上,包含这种可训练的二进制极端大且弯曲稀疏核(OBELISK)滤波器的深度网络需要更少的可训练参数和更少的内存,同时可以获得高质量的结果。广泛的验证实验表明,稀疏可变形卷积的性能归因于它们能够用少量表达性滤波器参数捕获大的空间上下文的能力,并且网络深度不一定是学习复杂形状和外观特征所必需的。与传统的 CNN 相结合,进一步提高了具有大形状变化的小器官的勾画能力,并且使用灵活的图像采样的快速推理时间可能为计算机辅助、图像引导干预中的深度网络提供新的潜在应用场景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验