Vanderbilt University, Department of Computer Science, Nashville, USA.
Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, USA.
Comput Biol Med. 2022 Jul;146:105555. doi: 10.1016/j.compbiomed.2022.105555. Epub 2022 Apr 26.
The construction of three-dimensional multi-modal tissue maps provides an opportunity to spur interdisciplinary innovations across temporal and spatial scales through information integration. While the preponderance of effort is allocated to the cellular level and explore the changes in cell interactions and organizations, contextualizing findings within organs and systems is essential to visualize and interpret higher resolution linkage across scales. There is a substantial normal variation of kidney morphometry and appearance across body size, sex, and imaging protocols in abdominal computed tomography (CT). A volumetric atlas framework is needed to integrate and visualize the variability across scales. However, there is no abdominal and retroperitoneal organs atlas framework for multi-contrast CT. Hence, we proposed a high-resolution CT retroperitoneal atlas specifically optimized for the kidney organ across non-contrast CT and early arterial, late arterial, venous and delayed contrast-enhanced CT. We introduce a deep learning-based volume interest extraction method by localizing the 2D slices with a representative score and crop within the range of the abdominal interest. An automated two-stage hierarchal registration pipeline is then performed to register abdominal volumes to a high-resolution CT atlas template with DEEDS affine and non-rigid registration. To generate and evaluate the atlas framework, multi-contrast modality CT scans of 500 subjects (without reported history of renal disease, age: 15-50 years, 250 males & 250 females) were processed. PDD-Net with affine registration achieved the best overall mean DICE for portal venous phase multi-organs label transfer with the registration pipeline (0.540 ± 0.275, p < 0.0001 Wilcoxon signed-rank test) comparing to the other registration tools. It also demonstrated the best performance with the median DICE over 0.8 in transferring the kidney information to the atlas space. DEEDS perform constantly with stable transferring performance in all phases average mapping including significant clear boundary of kidneys with contrastive characteristics, while PDD-Net only demonstrates a stable kidney registration in the average mapping of early and late arterial, and portal venous phase. The variance mappings demonstrate the low intensity variance in the kidney regions with DEEDS across all contrast phases and with PDD-Net across late arterial and portal venous phase. We demonstrate a stable generalizability of the atlas template for integrating the normal kidney variation from small to large, across contrast modalities and populations with great variability of demographics. The linkage of atlas and demographics provided a better understanding of the variation of kidney anatomy across populations.
构建三维多模态组织图谱为通过信息整合激发跨时间和空间尺度的跨学科创新提供了机会。虽然大部分努力都集中在细胞水平上,探索细胞相互作用和组织的变化,但将研究结果置于器官和系统内对于可视化和解释更高分辨率的跨尺度联系至关重要。在腹部计算机断层扫描 (CT) 中,肾脏形态和外观会因身体大小、性别和成像方案的不同而发生很大变化。需要建立一个容积图谱框架来整合和可视化跨尺度的变异性。然而,目前还没有多对比 CT 的腹部和腹膜后器官图谱框架。因此,我们提出了一种针对非对比 CT 以及早期动脉期、晚期动脉期、静脉期和延迟对比增强 CT 的高分辨率 CT 后腹膜图谱,专门针对肾脏器官进行优化。我们提出了一种基于深度学习的体积感兴趣区域提取方法,通过对具有代表性得分的 2D 切片进行定位,并在腹部感兴趣区域内进行裁剪。然后,通过自动两阶段分层配准流水线将腹部体积与高分辨率 CT 图谱模板进行配准,采用 DEEDS 仿射和非刚性配准。为了生成和评估图谱框架,对 500 名受试者(无肾脏疾病史,年龄 15-50 岁,男性 250 名,女性 250 名)的多对比模态 CT 扫描进行了处理。使用 PDD-Net 进行仿射配准,与其他配准工具相比,该配准方法在门静脉期多器官标签转移方面实现了最佳的总体平均 DICE(0.540 ± 0.275,p<0.0001 Wilcoxon 符号秩检验)。它还在将肾脏信息转移到图谱空间方面表现出最佳性能,中位数 DICE 超过 0.8。DEEDS 在所有相位的平均映射中表现稳定,具有对比度特征的肾脏边界清晰,而 PDD-Net 仅在早期和晚期动脉期以及门静脉期的平均映射中表现出稳定的肾脏注册。方差映射显示,在所有对比阶段,DEEDS 在肾脏区域的强度方差较低,而 PDD-Net 在晚期动脉期和门静脉期的强度方差较低。我们证明了图谱模板具有很好的泛化能力,可以整合从小到大都存在的正常肾脏变化,跨越对比度模式和具有很大人口统计学变异性的人群。图谱和人口统计学的联系提供了对人群中肾脏解剖结构变化的更好理解。