Institute of Medical Informatics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, SW7 2AZ, UK.
Int J Comput Assist Radiol Surg. 2018 Sep;13(9):1311-1320. doi: 10.1007/s11548-018-1797-4. Epub 2018 May 30.
Deep convolutional neural networks (DCNN) are currently ubiquitous in medical imaging. While their versatility and high-quality results for common image analysis tasks including segmentation, localisation and prediction is astonishing, the large representational power comes at the cost of highly demanding computational effort. This limits their practical applications for image-guided interventions and diagnostic (point-of-care) support using mobile devices without graphics processing units (GPU).
We propose a new scheme that approximates both trainable weights and neural activations in deep networks by ternary values and tackles the open question of backpropagation when dealing with non-differentiable functions. Our solution enables the removal of the expensive floating-point matrix multiplications throughout any convolutional neural network and replaces them by energy- and time-preserving binary operators and population counts.
We evaluate our approach for the segmentation of the pancreas in CT. Here, our ternary approximation within a fully convolutional network leads to more than 90% memory reductions and high accuracy (without any post-processing) with a Dice overlap of 71.0% that comes close to the one obtained when using networks with high-precision weights and activations. We further provide a concept for sub-second inference without GPUs and demonstrate significant improvements in comparison with binary quantisation and without our proposed ternary hyperbolic tangent continuation.
We present a key enabling technique for highly efficient DCNN inference without GPUs that will help to bring the advances of deep learning to practical clinical applications. It has also great promise for improving accuracies in large-scale medical data retrieval.
深度卷积神经网络(DCNN)目前在医学成像中无处不在。虽然它们在分割、定位和预测等常见图像分析任务中的多功能性和高质量结果令人惊讶,但这种高表现力的代价是需要大量的计算能力。这限制了它们在没有图形处理单元(GPU)的移动设备上进行图像引导干预和诊断(即时)支持的实际应用。
我们提出了一种新的方案,通过三进制值来近似深度网络中的可训练权重和神经激活,并解决了在处理不可微函数时反向传播的开放性问题。我们的解决方案能够在任何卷积神经网络中去除昂贵的浮点矩阵乘法,并通过节能且保持时间的二进制运算符和种群计数来代替它们。
我们在 CT 胰腺分割中评估了我们的方法。在这里,我们在全卷积网络中的三进制近似方法导致超过 90%的内存减少,并且具有很高的准确性(无需任何后处理),Dice 重叠率为 71.0%,接近于使用高精度权重和激活的网络获得的结果。我们进一步提供了一种在没有 GPU 的情况下实现亚秒级推断的概念,并与二进制量化和没有我们提出的三进制双曲正切延续进行了比较,证明了显著的改进。
我们提出了一种在没有 GPU 的情况下实现高效 DCNN 推断的关键使能技术,这将有助于将深度学习的进展应用于实际的临床应用。它在大规模医学数据检索中提高准确性方面也具有很大的潜力。