Department of Psychiatry, Psychotherapy, and Psychosomatics, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, 52072 Aachen, Germany; Jülich Aachen Research Alliance (JARA), Translational Brain Medicine, Aachen, Germany; Parietal Team, Institut National de Recherche en Informatique et en Automatique (INRIA), Neurospin, Commissariat à l'Energie Atomique (CEA) Saclay, 91191 Gif-sur-Yvette, France.
Meta-Research Innovation Center at Stanford, Stanford University, Stanford, CA, USA; Departments of Medicine, of Health Research and Policy, of Biomedical Data Science, and of Statistics, Stanford University, Stanford, CA, USA.
Trends Neurosci. 2019 Apr;42(4):251-262. doi: 10.1016/j.tins.2019.02.001. Epub 2019 Feb 23.
Recent decades have seen dramatic progress in brain research. These advances were often buttressed by probing single variables to make circumscribed discoveries, typically through null hypothesis significance testing. New ways for generating massive data fueled tension between the traditional methodology that is used to infer statistically relevant effects in carefully chosen variables, and pattern-learning algorithms that are used to identify predictive signatures by searching through abundant information. In this article we detail the antagonistic philosophies behind two quantitative approaches: certifying robust effects in understandable variables, and evaluating how accurately a built model can forecast future outcomes. We discourage choosing analytical tools via categories such as 'statistics' or 'machine learning'. Instead, to establish reproducible knowledge about the brain, we advocate prioritizing tools in view of the core motivation of each quantitative analysis: aiming towards mechanistic insight or optimizing predictive accuracy.
近几十年来,脑科学研究取得了显著进展。这些进展通常得益于对单一变量的深入研究,从而做出明确的发现,通常是通过零假设显著性检验。新的大数据生成方法加剧了传统方法与模式学习算法之间的紧张关系,前者用于推断精心选择的变量中具有统计学意义的效应,后者用于通过搜索丰富的信息来识别预测特征。在本文中,我们详细介绍了两种定量方法背后的对立哲学:在可理解的变量中证明稳健的效果,以及评估构建的模型预测未来结果的准确性。我们不鼓励通过“统计学”或“机器学习”等类别来选择分析工具。相反,为了建立关于大脑的可重复知识,我们提倡根据每个定量分析的核心动机来优先考虑工具:旨在获得机械洞察力或优化预测准确性。