Zainal Nur Hani, Tan Hui Han, Hong Ryan Yee Shiun, Newman Michelle Gayle
Department of Psychology, National University of Singapore, Singapore, Singapore.
Department of Psychology, The Pennsylvania State University, University Park, PA, United States.
JMIR Ment Health. 2025 May 13;12:e67210. doi: 10.2196/67210.
Shame and stigma often prevent individuals with social anxiety disorder (SAD) from seeking and attending costly and time-intensive psychotherapies, highlighting the importance of brief, low-cost, and scalable treatments. Creating prescriptive outcome prediction models is thus crucial for identifying which clients with SAD might gain the most from a unique scalable treatment option. Nevertheless, widely used classical regression methods might not optimally capture complex nonlinear associations and interactions.
Precision medicine approaches were thus harnessed to examine prescriptive predictors of optimization to a 14-day fully self-guided mindfulness ecological momentary intervention (MEMI) over a self-monitoring app (SM).
This study involved 191 participants who had probable SAD. Participants were randomly assigned to MEMI (n=96) or SM (n=95). They completed self-reports of symptoms, risk factors, treatment, and sociodemographics at baseline, posttreatment, and 1-month follow-up (1MFU). Machine learning (ML) models with 17 predictors of optimization to MEMI over SM, defined as a higher probability of SAD remission from MEMI at posttreatment and 1MFU, were evaluated. The Social Phobia Diagnostic Questionnaire, structurally equivalent to the Diagnostic and Statistical Manual SAD criteria, was used to define remission. These ML models included random forest and support vector machines (radial basis function kernel) and 10-fold nested cross-validation that separated model training, minimal tuning in inner folds, and model testing in outer folds.
ML models outperformed logistic regression. The multivariable ML models using the 10 most important predictors achieved good performance, with the area under the receiver operating characteristic curve (AU-ROC) values ranging from .71 to .72 at posttreatment and 1MFU. These prerandomization and early-stage prescriptive predictors consistently identified which participants had the highest probability of optimization of MEMI over SM after 14 days and 6 weeks from baseline. Significant predictors included 4 strengths (higher trait mindfulness, lower SAD severity, presence of university education, no current psychotropic medication use), 2 weaknesses (higher generalized anxiety severity and clinician-diagnosed depression or anxiety disorder), and 1 sociodemographic variable (Chinese ethnicity). Emotion dysregulation and current psychotherapy predicted remission with inconsistent signs across time points.
The AU-ROC values indicated moderately meaningful effect sizes in identifying prescriptive predictors within multivariable models for clients with SAD. Focusing on the identified notable client strengths, weaknesses, and Chinese ethnicity may enhance our ability to predict future responses to scalable treatments. Estimating the likelihood of SAD remission with a "prescriptive predictor calculator" for each client may help clinicians and policymakers allocate scarce treatment resources effectively. Clients with high remission probability may benefit from receiving the MEMI as a vigilant waitlist strategy before intensive therapist-led psychotherapy. These efforts may aid in creating actionable treatment selection tools to optimize care for clients with SAD in routine health care settings that use stratified care principles.
OSF Registries 10.17605/OSF.IO/M3KXZ; https://osf.io/m3kxz.
羞耻感和污名化常常使社交焦虑障碍(SAD)患者不愿寻求并接受成本高昂且耗时的心理治疗,这凸显了简短、低成本且可扩展治疗方法的重要性。因此,创建规范性结果预测模型对于确定哪些SAD患者可能从独特的可扩展治疗方案中获益最大至关重要。然而,广泛使用的经典回归方法可能无法最佳地捕捉复杂的非线性关联和相互作用。
因此,利用精准医学方法来研究通过一款自我监测应用程序(SM)进行为期14天的完全自我引导的正念生态瞬时干预(MEMI)实现优化的规范性预测因素。
本研究纳入了191名可能患有SAD的参与者。参与者被随机分配至MEMI组(n = 96)或SM组(n = 95)。他们在基线、治疗后及1个月随访(1MFU)时完成了症状、风险因素、治疗及社会人口统计学的自我报告。评估了具有17个预测MEMI优于SM的优化预测因素的机器学习(ML)模型,优化定义为治疗后及1MFU时MEMI实现SAD缓解的更高概率。使用与《精神疾病诊断与统计手册》SAD标准结构等效的社交恐惧症诊断问卷来定义缓解情况。这些ML模型包括随机森林和支持向量机(径向基函数核)以及10折嵌套交叉验证,该验证将模型训练、内折中的最小调优以及外折中的模型测试区分开来。
ML模型优于逻辑回归。使用10个最重要预测因素的多变量ML模型表现良好,治疗后及1MFU时受试者工作特征曲线下面积(AU - ROC)值在0.71至0.72之间。这些随机分组前和早期的规范性预测因素始终能确定哪些参与者在自基线起14天和6周后MEMI优于SM的概率最高。显著的预测因素包括4个优势(更高的特质正念、更低的SAD严重程度、拥有大学学历、目前未使用精神药物)、2个劣势(更高的广泛性焦虑严重程度以及临床医生诊断的抑郁或焦虑障碍)以及1个社会人口统计学变量(华裔)。情绪失调和当前的心理治疗在不同时间点对缓解的预测具有不一致的符号。
AU - ROC值表明在为SAD患者的多变量模型中识别规范性预测因素时具有适度有意义的效应大小。关注已确定的显著客户优势、劣势和华裔可能会增强我们预测对可扩展治疗未来反应的能力。为每个客户使用“规范性预测因素计算器”估计SAD缓解的可能性可能有助于临床医生和政策制定者有效分配稀缺的治疗资源。缓解概率高的客户可能会受益于在由治疗师主导的强化心理治疗之前将MEMI作为一种警惕的等待名单策略。这些努力可能有助于创建可操作的治疗选择工具,以在使用分层护理原则的常规医疗保健环境中优化对SAD患者的护理。
OSF注册库10.17605/OSF.IO/M3KXZ;https://osf.io/m3kxz。