CSIRO, Sydney, NSW, Australia.
John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.
Sci Rep. 2019 Feb 26;9(1):2788. doi: 10.1038/s41598-019-39142-0.
Editing individual nucleotides is a crucial component for validating genomic disease association. It is currently hampered by CRISPR-Cas-mediated "base editing" being limited to certain nucleotide changes, and only achievable within a small window around CRISPR-Cas target sites. The more versatile alternative, HDR (homology directed repair), has a 3-fold lower efficiency with known optimization factors being largely immutable in experiments. Here, we investigated the variable efficiency-governing factors on a novel mouse dataset using machine learning. We found the sequence composition of the single-stranded oligodeoxynucleotide (ssODN), i.e. the repair template, to be a governing factor. Furthermore, different regions of the ssODN have variable influence, which reflects the underlying mechanism of the repair process. Our model improves HDR efficiency by 83% compared to traditionally chosen targets. Using our findings, we developed CUNE (Computational Universal Nucleotide Editor), which enables users to identify and design the optimal targeting strategy using traditional base editing or - for-the-first-time - HDR-mediated nucleotide changes.
编辑单个核苷酸是验证基因组疾病关联的关键组成部分。目前,它受到 CRISPR-Cas 介导的“碱基编辑”的限制,这种编辑只能实现某些核苷酸的改变,并且只能在 CRISPR-Cas 靶位点周围的小窗口内实现。更通用的替代方法 HDR(同源定向修复)的效率要低 3 倍,已知的优化因素在实验中基本是不可变的。在这里,我们使用机器学习研究了一个新的小鼠数据集的可变效率控制因素。我们发现单链寡脱氧核苷酸 (ssODN) 的序列组成,即修复模板,是一个控制因素。此外,ssODN 的不同区域具有不同的影响,这反映了修复过程的潜在机制。与传统选择的靶点相比,我们的模型将 HDR 效率提高了 83%。利用我们的研究结果,我们开发了 CUNE(计算通用核苷酸编辑器),它使用户能够使用传统的碱基编辑或首次使用 HDR 介导的核苷酸变化来识别和设计最佳靶向策略。